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LoCoBench Benchmark

Phase 1
Project Generation

10 Languages • 36 Domains
1,000 Specifications

Phase 2
Codebase Synthesis
50K+ Files • 15M LOC
10-100 files per project

Phase 3
Scenario Creation

8 Task Categories
8,000 Scenarios

Phase 4
Validation

Verification • Execution
Bias • Consistency

Phase 5
LLM Evaluation

17 Comprehensive Metrics
LCBS Scoring

8 Long-Context Task Categories (1,000 each)

Architectural Understanding Cross-File Refactoring Feature Implementation Bug Investigation

Multi-Session Development Code Comprehension Integration Testing Security Analysis

4 Difficulty Levels, Context Length Scaling (100× Variation)
Easy: 10K-100K Medium: 100K-200K Hard: 200K-500K Expert: 500K-1M

 Comprehensive Evaluation Framework (17 Metrics Across 4 Dimensions)

 Software Engineering Excellence (8 metrics - 40%)
ACS, DTA, CFRD, STS, RS, CS, IS, SES

⚙ Functional Correctness (4 metrics - 30%)
Compilation, Unit Tests, Integration, IDC

Code Quality Assessment (3 metrics - 20%)
Security, Issues, Style

Long-Context Utilization (2 metrics - 10%)
ICU, MMR

Benchmark Statistics

8,000 evaluation scenarios across all task categories

50,000+ files with 15M lines of realistic code

10 programming languages, 36 domain categories

Figure 1: LoCoBench Pipeline Architecture. Our systematic 5-phase pipeline transforms high-level specifications
into a comprehensive evaluation benchmark. Phase 1 generates 1,000 diverse project specifications across 10
programming languages and 36 domains. Phase 2 creates complete codebases with realistic multi-file architectures,
generating over 50K files with 15M lines of code. Phase 3 transforms codebases into 8,000 evaluation scenarios
across 8 long-context task categories, with systematic context scaling from 10K to 1M tokens. Phase 4 ensures
quality through automated compilation checks, quality metrics validation, and bias detection. Phase 5 evaluates
LLMs using 17 comprehensive metrics across 4 evaluation dimensions.

Abstract
The emergence of long-context language models with context windows extending to millions of tokens has
created new opportunities for sophisticated code understanding and software development evaluation. We
propose LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context LLMs
in realistic, complex software development scenarios. Unlike existing code evaluation benchmarks that
focus on single-function completion or short-context tasks, LoCoBench addresses the critical evaluation
gap for long-context capabilities that require understanding entire codebases, reasoning across multiple
files, and maintaining architectural consistency across large-scale software systems. Our benchmark
provides 8,000 evaluation scenarios systematically generated across 10 programming languages, with
context lengths spanning 10K to 1M tokens, a 100× variation that enables precise assessment of long-
context performance degradation in realistic software development settings. LoCoBench introduces 8 task
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categories that capture essential long-context capabilities: architectural understanding, cross-file refactoring,
multi-session development, bug investigation, feature implementation, code comprehension, integration
testing, and security analysis. Through a 5-phase pipeline, we create diverse, high-quality scenarios that
challenge LLMs to reason about complex codebases at unprecedented scale. We introduce a comprehensive
evaluation framework with 17 metrics across 4 dimensions including new evaluation metrics: Architectural
Coherence Score (ACS), Dependency Traversal Accuracy (DTA), and Multi-Session Memory Retention
(MMR), combined in a LoCoBench Score (LCBS). Our evaluation of state-of-the-art long-context models
reveals substantial performance gaps, demonstrating that long-context understanding in complex software
development represents a significant unsolved challenge that demands more attention. LoCoBench is
released at: https://github.com/SalesforceAIResearch/LoCoBench.

1 Introduction

The emergence of long-context language models with context windows extending to millions of tokens
has created a new frontier in software development evaluation. As LLMs evolve from simple code
completion tools to sophisticated systems capable of reasoning about entire codebases, understanding
complex architectural patterns, and handling multi-file development workflows, traditional evaluation
frameworks have become fundamentally inadequate.

The Long-Context Revolution in Code. Recent breakthroughs in long-context LLMs with context
windows extending to millions of tokens (Reid et al., 2024; Anthropic, 2024) have unlocked unprecedented
opportunities for complex software development tasks. These models can now comprehend entire
codebases spanning hundreds of files, understand complex inter-module dependencies, and maintain
architectural consistency across large-scale systems. However, recent work reveals that long-context
capabilities remain a critical weakness: LongCodeBench (Rando et al., 2025) demonstrates dramatic
performance degradation from 29% to 3% for Claude 3.5 Sonnet as context length increases, while
RULER (Hsieh et al., 2024) shows that only half of models claiming 32K+ context sizes can maintain
satisfactory performance at that length.

The Long-Context Capability Gap. While existing code evaluation benchmarks have advanced single-
function generation (Chen et al., 2021; Austin et al., 2021) and repository-level understanding (Jimenez
et al., 2023; Liu et al., 2023b), they fall short of evaluating the sophisticated long-context capabilities
required for realistic software development workflows. Complex software development tasks require navi-
gating complex architectural decisions, performing multi-file reasoning, executing coordinated refactoring
across dozens of files, and maintaining architectural consistency across large codebases, capabilities that
extend far beyond traditional code generation or completion tasks.

The Evaluation Challenge. Current benchmarks exhibit three critical limitations that prevent adequate
assessment of long-context software development capabilities:

Scale Limitations: Most benchmarks contain fewer than 3K evaluation instances (Jimenez et al., 2023;
Hendrycks et al., 2021), providing insufficient coverage for systematic evaluation across languages,
complexity levels, and long-context tasks.

Context Limitations: Traditional benchmarks operate with short contexts (typically under 10K tokens),
failing to test models’ ability to understand and operate on realistic enterprise codebase sizes. Even recent
long-context benchmarks like ∞-Bench (Zhang et al., 2024a) and LongBench (Bai et al., 2024b) focus
primarily on document comprehension rather than complex code understanding.

Task Scope Limitations: Existing benchmarks focus on isolated code generation, completion, or bug
fixing, neglecting crucial long-context capabilities like architectural understanding, cross-file reasoning,
and complex multi-file workflows.

To address these fundamental gaps, we introduce LoCoBench, a comprehensive benchmark specifically
designed to evaluate long-context understanding in complex software development scenarios. Our
benchmark introduces:

• Systematic Long-Context Code Evaluation: LoCoBench provides 8,000 evaluation scenarios with
context lengths systematically spanning 10K to 1M tokens, a 100× variation that enables precise
assessment of long-context performance degradation in realistic software development settings.
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• Comprehensive Task Categories: We introduce 8 task categories that capture essential long-context
capabilities: architectural understanding, cross-file refactoring, multi-session development, bug
investigation, feature implementation, code comprehension, integration testing, and security analysis.

• New Evaluation Metrics: We present a comprehensive evaluation framework of 17 metrics across 4
dimensions, including 6 newly proposed metrics specifically designed for long-context capabilities,
combined in a unified LoCoBench Score (LCBS).

• Unprecedented Scale and Diversity: With 8,000 scenarios across 10 programming languages
and 36 domain categories, LoCoBench provides more evaluation instances than the largest existing
benchmark while maintaining systematic coverage of difficulty levels and realistic complexity
distributions.

Our evaluation of state-of-the-art models reveals substantial performance gaps. These findings demon-
strate that long-context understanding in complex software development represents a significant unsolved
challenge, highlighting the critical need for more benchmarks and models to drive progress in this domain.

2 Related Work

2.1 Code Generation Benchmarks

Traditional code evaluation benchmarks focus on narrow programming aspects. Function-level bench-
marks like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) established foundational
evaluation frameworks, with extensions including HumanEval+ (Liu et al., 2023a), MultiPL-E (Cas-
sano et al., 2023), and BigCodeBench (Zhuo et al., 2024). Contest programming benchmarks such as
APPS (Hendrycks et al., 2021), LiveCodeBench (Jain et al., 2024), and CodeContests (Li et al., 2022) test
algorithmic problem-solving but do not address software engineering concerns like architectural design or
multi-file development. Recent long-context code benchmarks include LongCodeBench (Rando et al.,
2025), which demonstrates dramatic performance degradation as context increases. LongCodeU (Li et al.,
2025) and LongCodeArena (Bogomolov et al., 2024) focus primarily on code completion rather than
comprehensive software development capabilities. Domain-specific benchmarks (Lai et al., 2022; Thakur
et al., 2023; Wang et al., 2022; Dong et al., 2024a; Du et al., 2023) and repository-level evaluation (Liu
et al., 2023b; Ding et al., 2023) represent progress toward realistic scenarios but remain limited in scope.

2.2 Software Engineering Benchmarks

SWE-Bench (Jimenez et al., 2023) provides real GitHub issues for software engineering evaluation, with
recent extensions including SWE-rebench (rebench Team, 2025) and LiveSWEBench (Team, 2024). Multi-
SWE-Bench (Zan et al., 2025) extends this approach with high-quality instances across 7 programming
languages, curated by expert annotators to address the Python-centric limitations of original SWE-Bench.
However, these benchmarks remain limited to bug fixes rather than comprehensive development workflows.
DevBench (Li et al., 2024) evaluates LLMs across the software development lifecycle but lacks systematic
long-context assessment. CodeXGLUE (Lu et al., 2021) addresses code understanding tasks but focuses
on existing code analysis rather than development workflows.

2.3 Long-Context Evaluation

General long-context benchmarks include LongBench (Bai et al., 2024b), RULER (Hsieh et al., 2024), ∞-
Bench (Zhang et al., 2024a), and others (Yen et al., 2024; Lee et al., 2024; An et al., 2024; Bai et al., 2024a;
Dong et al., 2024b). Code-specific long-context evaluation has emerged through LongCodeBench (Rando
et al., 2025), LongCodeU (Li et al., 2025), LongCodeArena (Bogomolov et al., 2024), and RepoQA (Liu
et al., 2024). However, existing long-context benchmarks primarily focus on natural language tasks or
code completion rather than complex multi-file software development capabilities.

2.4 Limitations and Contributions

We provided a comprehensive literature discussion in Appendix A. In short, current benchmarks exhibit
critical limitations: (1) Scale: Most contain <1,000 instances, insufficient for systematic evaluation;
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(2) Task Scope: Focus on isolated generation/completion rather than architectural understanding and
multi-session development; (3) Context Length: Operate with short contexts (<10K tokens); (4) Metrics:
Emphasize functional correctness while ignoring long-context capabilities like architectural coherence
and context retention.

LoCoBench addresses these limitations through 8,000 scenarios spanning 10K-1M tokens, comprehen-
sive task categories capturing essential long-context capabilities, and new evaluation metrics designed for
complex software development scenarios.

3 LoCoBench Benchmark

3.1 Benchmark Design Principles

LoCoBench is designed around four core principles that distinguish it from existing code evaluation
benchmarks:

Long-Context Tasks: Our benchmark focuses on evaluation scenarios that reflect real-world com-
plex software development capabilities, emphasizing tasks that require understanding large codebases,
managing complex dependencies, and maintaining consistency across multiple files and development
sessions.

Systematic Scale: We generate 8,000 evaluation scenarios through a systematic 5-phase pipeline that
ensures comprehensive coverage across programming languages, difficulty levels, and task categories
while maintaining high quality and diversity.

Long-Context Focus: Our scenarios span context lengths from 10K to 1M tokens, systematically testing
models’ ability to understand and operate on realistic codebase sizes that exceed the scope of traditional
benchmarks.

Comprehensive Metrics: Beyond traditional functional correctness, we introduce new evaluation met-
rics that capture long-context capabilities including architectural understanding, cross-file reasoning, and
multi-session memory retention.

Figure 1 illustrates the complete LoCoBench pipeline, showing the systematic flow from project
specifications to validated evaluation scenarios, including data processing, LLM integration, and quality
assurance mechanisms.

3.2 Five-Phase Pipeline

Our benchmark generation follows a systematic 5-phase pipeline designed to create high-quality, diverse
evaluation scenarios at scale:

Phase 1: Project Specification Generation We generate 1,000 diverse project specifications across
10 programming languages (100 per language). Each specification defines a complete software project
with realistic requirements, technical constraints, and architectural patterns. Projects span 36 domain
categories including web applications, machine learning systems, data processing pipelines, and system
utilities, with complexity levels ranging from simple applications to enterprise-scale systems.

Phase 2: Codebase Generation For each project specification, we generate complete, realistic
codebases containing 10-100 files per project. This phase creates architecturally coherent codebases that
include proper module structure, dependency management, documentation, and realistic code patterns.
Generated codebases undergo automated quality validation including compilation checks, complexity
analysis, and architectural consistency verification.

Phase 3: Evaluation Scenario Creation We transform each codebase into 8 evaluation scenarios (1 per
task category), resulting in 8,000 total scenarios. Each scenario includes carefully selected file subsets that
provide sufficient context while targeting specific long-context capabilities. Context selection employs
intelligent algorithms that balance information coverage, difficulty calibration, and realistic development
workflows. Our selection algorithm prioritizes files based on dependency graphs, architectural centrality,
and task-specific relevance, ensuring scenarios contain the minimum necessary context while maximizing
information density and maintaining realistic development patterns.

Phase 4: Validation and Quality Assurance All generated scenarios undergo comprehensive validation
including compilation verification, test execution, complexity scoring, and difficulty calibration. This
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Figure 2: LoCoBench Coverage Overview. Left: Programming language distribution showing equal representation
(10% each) across 10 languages spanning diverse paradigms from systems programming (C, C++, Rust) to
web development (JavaScript, TypeScript, PHP) to enterprise applications (Java, C#) to modern languages (Go,
Python). Right: Hierarchical domain organization with 36 sub-categories grouped into 10 main categories, ensuring
comprehensive coverage across web applications, API services, data systems, ML/AI systems, desktop applications,
mobile applications, system infrastructure, financial technology, gaming & simulation, and blockchain systems.

phase ensures that scenarios are executable, appropriately challenging, and free from generation artifacts
that could bias evaluation results. Validation is purely automated using compilation, testing, and metrics,
no LLM involvement to prevent bias.

Phase 5: LLM Evaluation and Scoring We evaluate state-of-the-art models using our comprehensive
17-metric framework across 4 dimensions: Software Engineering Excellence (8 metrics), Functional
Correctness (4 metrics), Code Quality Assessment (3 metrics), and Long-Context Utilization (2 metrics).
The Software Engineering Excellence dimension includes Architectural Coherence Score (ACS), Depen-
dency Traversal Accuracy (DTA), Cross-File Reasoning Depth (CFRD), System Thinking Score (STS),
Robustness Score (RS), Comprehensiveness Score (CS), Innovation Score (IS), and Solution Elegance
Score (SES). Functional Correctness comprises Compilation Success, Unit Test Performance, Integration
Test Performance, and Incremental Development Capability (IDC). Code Quality Assessment includes
Security Analysis Score, Average Issues Found (inverted), and Code Style Adherence. Long-Context
Utilization features Information Coverage Utilization (ICU) and Multi-Session Memory Retention (MMR).
These metrics are combined into a LoCoBench Score (LCBS) using weighted components: Software
Engineering Excellence (40%), Functional Correctness (30%), Code Quality Assessment (20%), and
Long-Context Utilization (10%).

3.3 Task Categories and Long-Context Capabilities
LoCoBench evaluates eight distinct task categories that capture essential long-context software develop-
ment capabilities:

• Architectural Understanding: Scenarios that require LLMs to comprehend complex system designs,
identify architectural patterns, and understand component relationships across large codebases.

• Cross-File Refactoring: Tasks involving code restructuring across multiple files while maintaining
functionality and preserving architectural constraints.

• Feature Implementation: Complex feature development scenarios that require understanding existing
code, planning implementation strategies, and integrating new functionality seamlessly.

• Bug Investigation: Systematic debugging tasks that require analyzing error patterns, tracing execution
flows, and identifying root causes across multi-file systems.
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Table 1: 8 task categories and details.

Domains Details

Architectural Understanding Design pattern recognition, dependency analysis, System design comprehension, component
relationships across large codebases

Cross-File Refactoring Multi-file restructuring and pattern application, Code restructuring across multiple files while
maintaining functionality

Feature Implementation Complex feature development in existing systems, Understanding existing code, planning imple-
mentation strategies, seamless integration

Bug Investigation Systematic debugging across complex codebases, Error pattern analysis, execution flow tracing,
root cause identification

Multi-Session Development Context persistence across development sessions, Long-term memory and incremental building,
simulating realistic project workflows

Code Comprehension Large codebase understanding and explanation, Information extraction for development decisions,
deep codebase analysis

Integration Testing System-level testing and validation, Component interaction testing, end-to-end functionality
validation

Security Analysis Security vulnerability assessment, Threat vector identification, security best practices implemen-
tation

• Multi-Session Development: Scenarios that test long-term memory and context retention across
multiple development sessions, simulating realistic project workflows.

• Code Comprehension: Tasks focused on understanding large, complex codebases and extracting
relevant information for development decisions.

• Integration Testing: Scenarios involving testing component interactions, validating system integration,
and ensuring end-to-end functionality.

• Security Analysis: Tasks requiring identification of security vulnerabilities, assessment of threat
vectors, and implementation of security best practices.

3.4 Difficulty Calibration and Context Scaling

Our benchmark systematically varies difficulty across four levels (easy, medium, hard, expert) with
corresponding context length ranges:

• Easy (10K-100K tokens): Basic long-context tasks with small to medium codebases.

• Medium (100K-200K tokens): Intermediate complexity with larger codebases.

• Hard (200K-500K tokens): Advanced scenarios with enterprise-scale codebases.

• Expert (500K-1M tokens): Maximum complexity with massive enterprise systems.

This systematic scaling allows precise evaluation of model capabilities as context length increases,
providing insights into long-context performance degradation and capabilities.

3.5 Quality Assurance and Validation

Every generated scenario undergoes rigorous quality assurance: ❶ Automated Validation: All code is
validated for compilation, execution, and basic functionality through automated testing pipelines using
language-specific compilers (gcc, javac, python, etc.) and testing frameworks. ❷ Complexity Metrics:
We employ cyclomatic complexity analysis, dependency depth measurement, and architectural coherence
scoring to ensure appropriate difficulty calibration. Scenarios are automatically filtered if complexity
metrics fall outside target ranges for their difficulty level. ❸ Information Coverage: Each scenario’s
information coverage ratio is calculated to ensure sufficient context for task completion while avoiding
information redundancy. We target coverage ratios >0.7 for all scenarios. ❹ Bias Detection: Automated
analysis identifies and filters scenarios with potential biases, generation artifacts, or unrealistic patterns
that could skew evaluation results. This includes detection of repeated code patterns, unrealistic naming
conventions, and generation-specific artifacts.
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3.6 Benchmark Statistics and Scale

LoCoBench represents the largest and most comprehensive evaluation framework for long-context
software development to date. Our systematic generation approach produces unprecedented scale
and diversity: ❶ 8,000 evaluation scenarios across 8 task categories. ❷ 1,000 synthetic projects span-
ning 36 domain categories. ❸ 10 programming languages with balanced coverage. ❹ Context range
from 10K to 1M tokens (100× variation). ❺ 50,000+ generated files with realistic code patterns. ❻

Systematic difficulty distribution across 4 complexity levels.
Language Distribution: Our benchmark provides balanced coverage across diverse programming

paradigms with each language contributing equally (10%) to our 8,000 scenarios. Languages span from
systems programming (C, C++, Rust) to web development (JavaScript, TypeScript, PHP), enterprise
applications (Java, C#), and modern data science/AI frameworks (Python, Go). This equal distribution
ensures comprehensive evaluation across different language characteristics while avoiding bias toward
any particular programming paradigm.

Table 2: 10 Programming Languages with example usage cases.

Programming Language Usage Cases

Python AI/ML dominance, automation, data science
C++ High-performance, games, embedded systems
Java Enterprise, Android, backend services
C Systems programming, OS development, embedded
C# Enterprise, Windows, .NET ecosystem
JavaScript Web development, full-stack
TypeScript Enterprise web, type safety
Go Cloud-native, microservices
Rust Systems, security, memory safety
PHP Web backends, legacy systems

Domain Coverage: Projects span 36 distinct domains including web applications (ecommerce, social,
dashboard, blog, CMS, portfolio), machine learning systems (training, inference, computer vision,
NLP), data processing (analytics, ETL, streaming, warehousing), system utilities (networking, security,
monitoring, automation), APIs (REST, GraphQL, microservices, gateway), financial technology (banking,
payments, trading), gaming (engine, simulation), blockchain (DeFi, NFT), and mobile applications (utility,
social, gaming).

Table 3: 36 domain categories grouped into 10 main domains.

Domains Sub-Domains Total

Web Applications E-commerce, Social Platforms, CMS, Dashboards, Blogs, Portfolios 6
API Services REST APIs, GraphQL Services, Microservices, API Gateways 4
Data Systems Analytics Platforms, ETL Pipelines, Data Warehouses, Streaming, Data Lakes 5
ML/AI Systems Training Platforms, Inference Services, NLP Systems, Computer Vision 4
Desktop Applications Productivity Tools, Media Applications, Development Environments 3
Mobile Applications Social Apps, Utility Apps, Mobile Games 3
System Infrastructure Monitoring, Automation, Networking, Security Tools 4
Financial Technology Payment Systems, Trading Platforms, Banking Applications 3
Gaming & Simulation Game Engines, Simulation Frameworks 2
Blockchain Systems DeFi Platforms, NFT Marketplaces 2

Complexity Metrics: Our generated codebases exhibit realistic complexity distributions with cyclo-
matic complexity scores ranging from 0.3 to 1.0, file counts between 10-100 per project, and documentation
ratios exceeding industry standards. Automated validation ensures all code compiles successfully and
maintains architectural coherence.

Line of Code: Figure 4 presents the statistical characteristics of LoCoBench’s evaluation projects,
revealing realistic complexity distributions with a mean of 14,559 lines of code and 48.7 files per project.
The right-skewed distributions (top row) mirror real-world software patterns, ranging from compact
applications to enterprise-scale systems with over 40,000 lines. The language-specific analysis (bottom
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Table 4: Additional uniqueness factors.

Factor Details Total

Architecture Patterns Monolithic, Microservices, Serverless, Event-Driven, Layered, Clean Architec-
ture, Hexagonal, MVC, MVVM, Component-Based

10

Project Themes Business, Education, Healthcare, Entertainment, Productivity, Social, Utility,
Creative

8

Complexity Levels Easy (25%), Medium (25%), Hard (25%), Expert (25%) 4

10%
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10%
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10%
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10%
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10%

Layered

10%

Clean
Architec

10%
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10%
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10%

MVVM
10%
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Architecture Patterns

12.5%

Business

12.5%

Education

12.5%
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12.5%
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12.5%
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12.5%
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12.5%
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12.5%
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25%
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25%
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25%
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25%
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Figure 3: Additional uniqueness factors in LoCoBench. Three independent factors provide comprehensive evaluation
coverage: Left: 10 architecture patterns including modern paradigms (microservices, serverless, event-driven)
and traditional approaches (monolithic, layered, MVC), ensuring evaluation across diverse software architectures.
Center: 8 project themes spanning business applications, educational tools, healthcare systems, entertainment
platforms, productivity software, social applications, utilities, and creative tools. Right: 4 complexity levels
(Easy, Medium, Hard, Expert) with equal 25% distribution, providing systematic difficulty progression from basic
long-context tasks to enterprise-scale challenges.

row) shows distinct patterns: systems languages (C, Rust) exhibit compact implementations, object-
oriented languages (Java, C#) demonstrate higher complexity with extensive file structures, while web
languages (JavaScript, TypeScript, PHP) show intermediate levels. These patterns validate LoCoBench’s
realistic representation across programming paradigms and complexity levels.

3.7 Comparison with Existing Benchmarks

LoCoBench addresses critical limitations in existing code evaluation benchmarks through systematic
design choices and comprehensive scope. Table 5 provides a comprehensive quantitative comparison
highlighting these distinctive features. While SWE-Bench (Jimenez et al., 2023) pioneered real-world
evaluation using GitHub issues, it remains constrained to Python-only repositories and focuses exclusively
on bug-fixing tasks. The benchmark’s 2,294 instances provide limited coverage across programming
paradigms and development scenarios, failing to capture the diversity of modern software engineering
practices. LongCodeBench (Rando et al., 2025) introduced long-context evaluation for code but primar-
ily emphasizes code completion and comprehension tasks rather than complex software development
workflows. Its focus on single-language evaluation and limited task diversity restricts its ability to as-
sess architectural understanding and multi-file reasoning capabilities essential for enterprise software
development. Despite supporting multiple languages, LongCodeArena (Bogomolov et al., 2024) con-
centrates on repository-level code completion rather than comprehensive development scenarios. The
benchmark lacks systematic evaluation of architectural coherence, cross-file refactoring, and multi-session
development workflows that characterize real-world software engineering. RULER (Hsieh et al., 2024)
provides valuable long-context evaluation but employs synthetic tasks primarily for natural language
processing. Its evaluation paradigm does not capture the unique challenges of software development,
including dependency management, architectural consistency, and code quality assessment.

LoCoBench’s Comprehensive Approach: Our benchmark uniquely combines: (1) Multi-language
Coverage across 10 programming languages with equal representation, avoiding language-specific bias; (2)
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Figure 4: LoCoBench’s evaluation projects analysis. Top row shows distribution of lines of code (left) and file
counts (right) across all evaluation projects. Bottom row: Programming language breakdown displaying lines of
code distribution (left) and file count distribution (right) across 10 programming languages.

Complex Task Categories spanning architectural understanding, cross-file refactoring, and multi-session
development that reflect real-world software engineering; (3) Systematic Context Scaling from 10K to
1M tokens with 100× variation enabling precise long-context performance analysis; (4) New Evaluation
Metrics including 6 newly proposed metrics (ACS, DTA, CFRD, ICU, MMR, IDC) specifically designed
for long-context capabilities; (5) Unprecedented Scale with 8,000 scenarios providing more evaluation
instances than the largest existing benchmark while maintaining systematic coverage across difficulty
levels and task categories.

4 Evaluation Metrics

4.1 Metric Overview
LoCoBench introduces a comprehensive evaluation framework with 17 metrics across 4 dimensions
designed to assess capabilities essential for realistic long-context software development scenarios. Our
framework combines 6 new metrics specifically designed for long-context LLM evaluation with 11
established metrics adapted from software engineering literature. Table 6 provides a comprehensive
overview of all 17 metrics organized by evaluation dimensions.

4.2 Software Engineering Excellence (8 metrics)
This dimension evaluates sophisticated software engineering capabilities essential for complex develop-
ment scenarios.

❶ Architectural Coherence Score (ACS): We introduce this new metric to evaluate LLMs’ ability
to maintain system-level design consistency across large codebases. Traditional metrics cannot capture
architectural understanding at the scale required for long-context evaluation.
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Table 5: Comprehensive comparison of LoCoBench with existing benchmarks across important evaluation dimen-
sions. LoCoBench uniquely combines large-scale multi-language evaluation, systematic long-context assessment,
complex software engineering tasks, and new metrics specifically designed for long-context capabilities. Columns:
Scale - Number of evaluation instances; Languages - Programming language coverage; Context Range - Token
length ranges; Task Types - Types of programming tasks; Multi-File - Support for multi-file scenarios; Architecture -
Architectural understanding evaluation; New Metrics - New evaluation metrics introduced; Real-World - Real-world
applicability. Color-coded symbols: Green checkmark (✓) for full support, Orange triangle (▶) for partial support,
Red X (✗) for no support.

Benchmark Scale Languages Context Range Task Types Multi-File Architecture New Metrics Real-World

HumanEval 164 1 (Python) Short (<10K) Algorithm ✗ ✗ ✗ ✗
SWE-Bench 2,294 1 (Python) Medium (10-50K) Bug Fix Only ▶ ✗ ✗ ✓
Multi-SWE-Bench 1,632 7 Medium (10-50K) Bug Fix Only ▶ ✗ ✗ ✓
LongCodeBench 600+ 1 (Python) Up to 1M Completion ▶ ✗ ✗ ▶
LongCodeArena 1,500+ Multiple Up to 2M Completion ✓ ✗ ✗ ▶
DevBench 200+ 4 Short (<10K) Mixed ▶ ✗ ✗ ▶
RULER 4,000+ N/A Up to 128K NLP Tasks ✗ ✗ ✗ ✗

LoCoBench 8,000 10 10K-1M 8 Categories ✓ ✓ 6 Metrics ✓

Table 6: Complete overview of LoCoBench’s 17 evaluation metrics across 4 dimensions. The framework combines 6
new metrics specifically designed for long-context capabilities with 11 established metrics from software engineering
literature.

Dimension Metric Abbr. Source

Software Engineering
Excellence (8)

Architectural Coherence Score ACS ⋆ New
Dependency Traversal Accuracy DTA ⋆ New
Cross-File Reasoning Depth CFRD ⋆ New
System Thinking Score STS (Blanchard and Fabrycky, 2016)
Robustness Score RS (iso, 2011)
Comprehensiveness Score CS (Kan, 2002)
Innovation Score IS (Glass, 2002)
Solution Elegance Score SES (Buse and Weimer, 2010)

Functional
Correctness (4)

Code Compilation Success CCS (McCabe, 1976)
Unit Test Performance UTP (Myers et al., 2011)
Integration Test Performance ITP (Binder, 1999)
Incremental Development Capability IDC ⋆ New

Code Quality
Assessment (3)

Security Analysis Score SAS (OWASP, 2021)
Average Issues Found (Inverted) AIF (Campbell and Papapetrou, 2013)
Code Style Adherence CSA (Kernighan and Pike, 1999)

Long-Context
Utilization (2)

Information Coverage Utilization ICU ⋆ New
Multi-Session Memory Retention MMR ⋆ New

Let C = {c1, c2, . . . , cn} represent a codebase and P = {p1, p2, . . . , pm} denote the set of architectural
patterns detected in C. For each pattern pi ∈ P , we define:

ACS(C) = 1

|P|
∑
p∈P

w(p) · α(p, C)
κ(p) + ϵ

(1)

where w(p) ∈ [0, 1] is the criticality weight of pattern p, α(p, C) ∈ [0, 1] measures pattern adherence
through SOLID principle compliance and design constraint satisfaction, κ(p) ≥ 1 represents pattern
complexity, and ϵ > 0 is a regularization constant preventing division by zero.

❷ Dependency Traversal Accuracy (DTA): This new metric specifically evaluates LLMs’ capability
to navigate complex inter-module dependencies in long-context scenarios, addressing a key gap in existing
evaluation frameworks.

Let G = (V,E) be the dependency graph where V represents modules and E denotes dependency
relationships. For each dependency dij ∈ E from module vi to vj , we define:

DTA(G) = 1

|E|
∑

dij∈E

µ(dij) · γ(dij ,G)
δ(dij) + 1

(2)

where µ(dij) ∈ [0, 1] measures correct usage through import validation and interface compliance,
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γ(dij ,G) ∈ [0, 1] quantifies contextual awareness of dependency relationships within graph G, and
δ(dij) ≥ 0 represents the transitive dependency depth of edge dij .

❸ Cross-File Reasoning Depth (CFRD): We propose this metric to assess LLMs’ understanding of
multi-file relationships and interactions, a capability crucial for complex software development but not
measured by existing benchmarks.

Given a file set F = {f1, f2, . . . , fn} and the cross-file interaction matrix R ∈ Rn×n, we define:

CFRD(F) =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

ρ(fi, fj) · ι(fi, fj) (3)

where ρ(fi, fj) ∈ [0, 1] quantifies reasoning depth between files fi and fj through semantic analysis
and cross-reference understanding, and ι(fi, fj) ∈ [0, 1] measures interaction complexity based on
coupling strength, interface dependencies, and shared abstractions.

❹ System Thinking Score (STS): Adapted from systems engineering assessment frameworks (Blanchard
and Fabrycky, 2016), measuring holistic software system understanding and scalability awareness.

❺ Robustness Score (RS): Based on IEEE/ISO 25010 software quality standards (iso, 2011), evaluating
code reliability, error handling, and defensive programming practices.

❻ Comprehensiveness Score (CS): Derived from software completeness metrics in quality assurance
literature (Kan, 2002), assessing solution coverage, documentation quality, and requirement fulfillment.

❼ Innovation Score (IS): Adapted from creative problem-solving assessment in software engineering
research (Glass, 2002), evaluating new approaches, modern practices, and creative solutions.

❽ Solution Elegance Score (SES): Based on code aesthetics and design quality metrics (Buse and
Weimer, 2010), measuring code clarity, theoretical soundness, and adherence to clean code principles.

4.3 Functional Correctness (4 metrics)

This dimension assesses the fundamental correctness and executability of generated code.
❶ Incremental Development Capability (IDC): We introduce this metric to evaluate LLMs’ ability

to build effectively on previous development work across multiple sessions, a crucial capability for
long-context software development not addressed by existing metrics.

Let T = {t1, t2, . . . , tk} represent a sequence of incremental development tasks applied to codebase
state transitions S0 → S1 → · · · → Sk. For each task ti:

IDC(T ) =
1

|T |

|T |∑
i=1

ξ(ti,Si−1) · σ(ti,Si)

β(ti,Si−1,Si) + 1
(4)

where ξ(ti,Si−1) ∈ [0, 1] measures extension quality of task ti relative to previous state Si−1,
σ(ti,Si) ∈ [0, 1] quantifies integration smoothness in resulting state Si, and β(ti,Si−1,Si) ≥ 0 counts
breaking changes introduced during the transition.

❷ Code Compilation Success (CCS): Binary assessment of syntactic correctness, a fundamental metric
established in early software engineering literature (McCabe, 1976).

❸ Unit Test Performance (UTP): Individual component testing validation, a standard practice from
software testing methodology (Myers et al., 2011).

❹ Integration Test Performance (ITP): System-wide functionality assessment, based on established
integration testing frameworks (Binder, 1999).

4.4 Code Quality Assessment (3 metrics)

This dimension evaluates security, maintainability, and adherence to coding standards.
❶ Security Analysis Score (SAS): Vulnerability assessment based on OWASP security analysis frame-

works (OWASP, 2021) and static analysis techniques, evaluating common security issues including SQL
injection, XSS, buffer overflows, and insecure cryptographic practices.

❷ Average Issues Found - Inverted (AIF): Code quality issue detection derived from static analysis
research and modern quality assessment tools (Campbell and Papapetrou, 2013), measuring the absence
of code smells, complexity violations, and maintainability issues (lower issue count yields higher score).
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❸ Code Style Adherence (CSA): Style guide compliance measurement based on coding standards
literature (Kernighan and Pike, 1999) and automated linting frameworks, evaluating naming conventions,
formatting consistency, and language-specific best practices.

4.5 Long-Context Utilization (2 metrics)

This dimension specifically evaluates capabilities unique to long-context software development scenarios.
❶ Information Coverage Utilization (ICU): We propose this metric to evaluate how effectively LLMs

utilize large context windows, addressing a critical gap in long-context evaluation.
Given context window W = {w1, w2, . . . , wm} and task-specific information elements I =

{i1, i2, . . . , in} ⊆ W , we define:

ICU(W, I) = |U(I)|
|I| ·

∑
u∈U(I) τ(u)

ϕ(U(I)) + ϵ
(5)

where U(I) ⊆ I represents the subset of utilized information elements, τ(u) ∈ [0, 1] quantifies the
task relevance of element u, ϕ(U(I)) ≥ 0 measures redundancy penalty through information overlap, and
ϵ > 0 is a regularization constant.

❷ Multi-Session Memory Retention (MMR): This new metric assesses context persistence across
extended development sessions, essential for evaluating long-context capabilities in realistic software
development workflows.

Consider a sequence of development sessions S = {s1, s2, . . . , sk} with associated context states
{C1, C2, . . . , Ck}. We define:

MMR(S) = 1

|S|

|S|∑
j=1

ψ(sj , Cj−1) · χ(sj , Cj)

log(j + 1)
(6)

where ψ(sj , Cj−1) ∈ [0, 1] measures information retention from previous context state Cj−1 to session
sj , χ(sj , Cj) ∈ [0, 1] quantifies consistency maintenance in current context state Cj , and the logarithmic
decay term log(j + 1) models expected memory degradation over temporal distance.

4.6 LoCoBench Score (LCBS)

We define a unified LoCoBench Score (LCBS) as a weighted aggregate function that maps the 17-
dimensional metric space to a scalar evaluation score. Let M = {m1,m2, . . . ,m17} represent the
complete set of evaluation metrics, partitioned into four evaluation dimensions.

Dimension Partitioning: The metric space is partitioned as:

MSE = {ACS,DTA,CFRD,STS,RS,CS, IS, SES} |MSE | = 8 (7)
MFC = {CCS,UTP, ITP, IDC} |MFC | = 4 (8)
MCQ = {SAS,AIF,CSA} |MCQ| = 3 (9)

MLCU = {ICU,MMR} |MLCU | = 2 (10)

where MSE ∪MFC ∪MCQ ∪MLCU = M and the sets are pairwise disjoint.

Normalization Function: For each metric mi ∈ M, we define a normalization function N : R →
[0, 1] that maps raw metric values to the unit interval:

N (mi) =
mi −min(mi)

max(mi)−min(mi)
(11)

Dimension Aggregation: Each dimension score is computed as the arithmetic mean of its constituent
normalized metrics:
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SE =
1

|MSE |
∑

m∈MSE

N (m) =
1

8

8∑
i=1

N (mSE
i ) (12)

FC =
1

|MFC |
∑

m∈MFC

N (m) =
1

4

4∑
i=1

N (mFC
i ) (13)

CQ =
1

|MCQ|
∑

m∈MCQ

N (m) =
1

3

3∑
i=1

N (mCQ
i ) (14)

LCU =
1

|MLCU |
∑

m∈MLCU

N (m) =
1

2

2∑
i=1

N (mLCU
i ) (15)

Weight Vector: We define the weight vector w = [wSE , wFC , wCQ, wLCU ]
T where:

w = [0.4, 0.3, 0.2, 0.1]T such that
∑
i

wi = 1 (16)

The weights are empirically determined to reflect the relative importance of each dimension in long-
context software development scenarios, with software engineering excellence receiving the highest
weight due to its comprehensive nature.

Final Score: The LoCoBench Score is defined as a weighted linear combination scaled to the interval
[0,5]:

LCBS = 5 ·wT · [SE,FC,CQ,LCU ]T = 5 · (wSE · SE + wFC · FC + wCQ · CQ+ wLCU · LCU) (17)

Substituting the weight values:

LCBS = 5 · (0.4 · SE + 0.3 · FC + 0.2 · CQ+ 0.1 · LCU) (18)

5 Experiments, Results and Discussions

5.1 Evaluation Infrastructure and Process
LoCoBench provides a comprehensive evaluation infrastructure designed for reliable, scalable assess-
ment: ❶ Model Integration: Our framework supports evaluation of any long-context LLM through
standardized APIs, including OpenAI GPT, Google Gemini, and Anthropic Claude models. Each model
is evaluated with consistent hyperparameters to ensure reproducible results. ❷ Context Management:
Advanced context windowing techniques handle scenarios exceeding model context limits, with intelligent
truncation strategies that preserve essential information while maintaining task solvability. ❸ Execution
Environment: Isolated Docker containers provide secure execution environments for code validation,
with language-specific toolchains and timeout mechanisms (3600 seconds per evaluation) to prevent
infinite loops or resource exhaustion. ❹ Error Recovery: Robust error handling addresses common
evaluation challenges including parsing failures, compilation errors, and runtime exceptions, with detailed
logging for debugging and analysis.

5.2 Overall Model Performance Analysis
Figure 5 compares the performance of three leading LLMs across 10 evaluation dimensions, showing
distinct performance profiles that reflect different architectural strengths and optimization strategies.
Gemini-2.5-Pro emerges as the overall leader, demonstrating exceptional performance in cross-file refac-
toring, long-context utilization, integration tests, and multi-session development. This model shows
particular strength in complex software engineering tasks that require deep system-level reasoning and
comprehensive testing capabilities. Its superior performance suggests strong capabilities for comprehend-
ing large-scale software designs and identifying structural patterns across extensive codebases.

GPT-5 achieves competitive performance, showing remarkable consistency across most evaluation
dimensions. Notably, GPT-5 demonstrates the highest performance in architectural understanding,
indicating specialized capabilities for recognizing and analyzing complex software design patterns. This
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Figure 5: Overall performance comparison of GPT-5, Gemini-2.5-Pro, and Claude-Sonnet-4 across 10 LoCoBench
dimensions. Gemini-2.5-Pro demonstrates superior performance on many aspects, particularly on cross-file
refactoring, long-context utilization, integration tests, and multi-session development capabilities, while GPT-5
excels in architectural understanding. Claude-Sonnet-4 shows balanced performance with particular strength in
code comprehension.

strength in architectural comprehension suggests that GPT-5 may be particularly well-suited for tasks
involving system design analysis and high-level software architecture evaluation. Claude-Sonnet-4
presents a distinctive performance profile, showing particular excellence in code comprehension, which
indicates strong capabilities for understanding and analyzing existing codebases.

Figure 5 shows that all three models achieve relatively similar performance levels across many dimen-
sions, with the largest performance gaps occurring in specialized areas such as long-context utilization
and specific task categories. This convergence suggests that current state-of-the-art models have reached
similar competency levels for basic long-context software development tasks, while differentiation occurs
primarily in specialized capabilities requiring domain-specific reasoning patterns. The custom per-axis
scaling employed in the visualization effectively highlights these subtle but important performance
differences that would be obscured by uniform scaling approaches.

Interestingly, the performance patterns suggest that different models may have been optimized for
different aspects of software development workflows. The variation in long-context utilization capabilities
across models indicates that handling extended context windows remains a significant technical challenge,
with different approaches yielding varying degrees of success. This specialization pattern has important
implications for practical deployment, as organizations may benefit from selecting models based on their
specific software development needs and the types of long-context tasks they most frequently encounter.
The relatively tight performance clustering among these top-tier models also suggests that the field of
long-context code understanding is approaching certain fundamental limitations with current architectures
and training methodologies. Future improvements may require new approaches to context management,
architectural understanding, and multi-file reasoning rather than incremental refinements to existing
techniques.

5.3 Comprehensive Model Ranking Analysis
Figure 6 presents a comprehensive ranking of all evaluated models across two dimensions: general
software engineering competency and specialized long-context processing capabilities. The left chart
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Figure 6: Model ranking and long-context utilization comparison. Left chart shows LoCoBench Score (LCBS)
rankings. Right chart displays long-context utilization performance.

displays overall LoCoBench Score (LCBS) performance, revealing a clear performance hierarchy with
Gemini-2.5-Pro achieving the highest score. The performance distribution shows relatively tight clustering
among top-tier models, indicating that leading models have achieved similar competency levels for
complex software development tasks. This clustering pattern suggests that the current generation of large
language models has reached a plateau in general software engineering capabilities, with incremental
improvements rather than dramatic performance leaps.

The right chart focuses specifically on long-context utilization capabilities, revealing markedly different
performance patterns compared to overall rankings. Gemini-2.5-Flash demonstrates superior long-context
processing abilities, suggesting specialized optimization for extended context handling that may come
at the expense of other capabilities. This divergence between overall performance and long-context
specialization highlights the distinct challenges posed by extended context scenarios versus general
software engineering tasks. The performance gap in long-context utilization is notably larger than in
overall scores, indicating that effective context management remains a significant technical challenge
requiring specialized architectural solutions.

The dual visualization reveals that model performance varies significantly between comprehensive
software engineering evaluation and specialized long-context capabilities. While some models excel in
overall software development competency, others show particular strength in processing and utilizing
extended context information, suggesting different architectural optimizations and training strategies
across model families. This specialization pattern reflects the inherent trade-offs in model design, where
optimization for specific capabilities may impact performance in other areas.

The model ranking also demonstrates the importance of evaluating models across multiple dimensions
rather than relying on single aggregate scores. Models that appear similar in overall performance
may exhibit substantial differences in specific capabilities that are crucial for particular use cases. For
organizations deploying these models in production environments, understanding these performance
trade-offs is essential for selecting the most appropriate model for their specific long-context software
development requirements.

Furthermore, the performance distribution across all evaluated models reveals a clear stratification, with
distinct performance tiers emerging. This stratification suggests that while the top-performing models
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are relatively close in capability, there remain significant gaps between different model generations and
architectures. The lower-performing models in the ranking may still be suitable for specific applications or
resource-constrained environments, highlighting the importance of comprehensive evaluation frameworks
like LoCoBench for understanding the full spectrum of model capabilities.

5.4 Programming Language Performance Analysis
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Figure 7: Programming language performance heatmap showing model performance across 10 programming
languages. Languages are ordered by difficulty from easiest to hardest.

Figure 7 presents a comprehensive analysis of model performance across 10 programming languages,
revealing distinct patterns in language-specific capabilities. The heatmap visualization shows clear
performance variations across different programming paradigms, with models demonstrating varying
proficiency levels depending on language characteristics and complexity.

The analysis reveals that models generally achieve higher performance on high-level languages such
as Python and PHP, while showing more challenging performance patterns on systems programming
languages like C and Rust. This performance gradient reflects the inherent complexity differences
between languages and the varying amounts of training data typically available for different programming
languages. The ordering from easiest to hardest languages demonstrates a consistent difficulty progression
that aligns with traditional programming language learning curves and industry adoption patterns.

Language-specific performance patterns indicate that model training and optimization strategies may
be influenced by language popularity and representation in training datasets. The consistent performance
ordering across most models suggests systematic challenges posed by certain language features, such as
memory management in systems languages and complex type systems in modern programming languages.
Notably, web development languages like JavaScript and TypeScript show intermediate performance
levels, reflecting their moderate complexity and widespread usage in training corpora.
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Figure 7 also reveals interesting model-specific strengths and weaknesses across languages. While most
models follow similar performance trends, some demonstrate particular proficiency in specific language
domains, suggesting that certain architectural choices or training methodologies may be more effective
for particular programming paradigms. This language-dependent performance variation has important
implications for practical deployment, as organizations working primarily with specific programming
languages may benefit from selecting models that demonstrate superior performance in their target
language ecosystem.

Furthermore, the performance patterns observed across languages provide insights into the fundamental
challenges of long-context code understanding. Systems programming languages, which typically require
more precise memory management and lower-level reasoning, consistently pose greater challenges across
all evaluated models. This suggests that current long-context LLMs may struggle with the detailed,
hardware-aware reasoning required for effective systems programming, highlighting an important area for
future model development and training optimization.

5.5 Task Category Performance and Difficulty Analysis
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Figure 8: Task category performance analysis. Top chart shows performance distribution across all models for each
task category, with individual model performance overlaid. Bottom chart displays task difficulty patterns and model
performance trends across different software engineering tasks.

Figure 8 presents a comprehensive analysis of model performance across eight distinct task categories,
revealing both individual model capabilities and inherent task difficulty patterns. The visualization shows
overall performance distributions with detailed model-specific analysis, providing insights into both the
challenges posed by different software engineering tasks and the varying capabilities of evaluated models.

The top chart shows the complete performance distribution across all evaluated models for each task
category, with individual model performances overlaid as scatter points. This figure reveals significant
variations in task difficulty, with some categories showing wide performance distributions indicating high
variability in model capabilities, while others demonstrate more consistent performance patterns. The plot
provide insights into the underlying performance characteristics, with broader distributions indicating
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tasks where models show more varied success rates, and narrower distributions suggesting more consistent
challenge levels across different model architectures.

The bottom chart focuses on task difficulty analysis by displaying the performance range (score
variance) for each task category as background bars, while overlaying individual model performance
trends as connected line plots. This dual-axis approach effectively illustrates the relationship between
inherent task difficulty and model-specific performance patterns. Tasks with larger score ranges indicate
greater difficulty variation among models, suggesting that these tasks may be more sensitive to specific
architectural optimizations or training methodologies.

The analysis reveals distinct performance patterns across task categories, with integration testing
and architectural understanding generally showing higher performance scores, while tasks such as bug
investigation and multi-session development present greater challenges for most models. This performance
hierarchy reflects the varying complexity of different software engineering activities, with some tasks
requiring more sophisticated reasoning capabilities or longer-context understanding than others. The
consistent ordering of task difficulty across most models suggests that certain software engineering
challenges are fundamentally more difficult for current long-context LLMs, regardless of their specific
architectural approaches.

Model-specific performance patterns also emerge from the analysis, with some models demonstrating
particular strengths in specific task categories while showing relative weaknesses in others. This special-
ization pattern indicates that different models may have been optimized for different aspects of software
engineering workflows, or that their training data may have contained varying representations of different
task types. The performance variations across tasks have important implications for practical deployment,
as organizations may benefit from selecting models based on the specific types of software engineering
tasks they most frequently encounter.

Figure 8 shows the importance of considering both absolute performance levels and performance
consistency when evaluating models for long-context software development tasks. Tasks that show high
performance variance may require more careful model selection and potentially different evaluation
strategies, while tasks with consistent performance patterns across models may be more predictable in
production environments. This analysis framework provides valuable insights for both model developers
seeking to improve specific capabilities and practitioners selecting appropriate models for their software
development workflows.

5.6 Context Length and Difficulty Impact Analysis
Figure 9 provides a comprehensive analysis of how context length and task difficulty impact model
performance across multiple dimensions, revealing critical insights into model behavior under varying
challenge levels. Figure 9 shows different aspects of performance patterns, from overall difficulty trends
to individual model characteristics and consistency analysis.

The upper left chart reveals the performance distribution across difficulty levels, showing how task
complexity affects overall model performance. The visualization demonstrates clear performance degra-
dation patterns as difficulty increases from easy to expert levels, with corresponding increases in context
length requirements. This analysis reveals that the relationship between context length and difficulty
creates compounding challenges for long-context models, where both factors contribute to performance
decline. The distribution patterns also show varying levels of performance variance across difficulty levels,
indicating that some difficulty categories present more consistent challenges while others exhibit higher
variability in model responses.

The upper right chart shows individual model performance trends across all difficulty levels, showing
how different models handle increasing complexity and context requirements. The analysis reveals distinct
model behavior patterns, with some models maintaining relatively stable performance across difficulty
levels while others show significant degradation. This visualization demonstrates that model architectures
respond differently to the combined challenges of increased context length and task complexity, suggesting
that different optimization strategies may be more effective for different difficulty ranges.

The lower left chart presents analysis of model characteristics through consistency versus specialization
patterns. This analysis examines whether models perform consistently across different difficulty levels
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Figure 9: Context length and difficulty impact analysis. Upper left shows performance distribution by difficulty
level. Upper right displays individual model performance trends across difficulty levels. Lower left presents model
consistency versus specialization patterns. Lower right analyzes performance versus consistency relationships.

or show specialized strengths in particular areas. The bubble chart visualization reveals that models
exhibit varying trade-offs between consistency and specialization, with some models demonstrating stable
performance across all difficulty levels while others show strong performance in specific areas but greater
variability overall. The bubble sizes represent overall performance levels, providing insights into how
these characteristics relate to absolute performance capabilities.

The lower right chart analyzes the relationship between overall performance and consistency. This
analysis shows that high-performing models do not necessarily exhibit consistent performance across all
difficulty levels, and some models achieve strong overall scores while showing significant variability in
specific scenarios. This finding has important implications for model selection in production environments,
where consistency may be as important as peak performance for reliable system behavior.

The comprehensive analysis reveals that context length and difficulty interact in complex ways that
affect different models differently. Some models show graceful degradation patterns that maintain
reasonable performance even at expert difficulty levels, while others exhibit more dramatic performance
drops as context requirements increase. These patterns suggest that different model architectures may be
optimized for different aspects of long-context processing, with some prioritizing consistency and others
focusing on peak performance capabilities.

The multi-dimensional analysis framework also highlights the importance of evaluating models across
multiple metrics rather than relying solely on aggregate performance scores. Models that appear similar in
overall performance may exhibit substantially different consistency patterns, specialization characteristics,
and responses to difficulty scaling. This evaluation provides findings for both model developers seeking
to improve specific aspects of long-context performance and practitioners selecting appropriate models
for specific deployment scenarios with known difficulty and context requirements.
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5.7 Domain Specialization and Performance Analysis
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Figure 10: Domain specialization and performance analysis. Top chart shows model performance trends across 10
application domains. Lower left displays domain difficulty spectrum from easiest to hardest. Lower right presents
model consistency analysis comparing average performance with domain variation patterns.

Figure 10 presents a comprehensive analysis of model performance across 10 distinct application
domains, revealing specialization patterns and consistency characteristics that provide insights into model
suitability for different software development contexts. It examines domain-specific performance trends,
difficulty hierarchies, and model consistency patterns across diverse application areas.

The top chart displays model performance trajectories across all application domains, showing how
different models perform relative to each other across various software development contexts. This
visualization reveals distinct patterns in domain-specific performance, with some models maintaining con-
sistent performance across domains while others show significant variation depending on the application
area. The analysis demonstrates that domain specialization effects are substantial, with models showing
clear preferences for certain types of applications over others. These patterns suggest that training data
representation and architectural optimizations may vary significantly across different application domains.

The lower left chart analyzes domain difficulty patterns by presenting the easiest and hardest domains
on a relative difficulty spectrum. This analysis reveals that certain application domains consistently pose
greater challenges across all evaluated models, while others represent more accessible areas for long-
context software development tasks. The difficulty hierarchy shows that domains like Gaming Simulation
and Api Services tend to be more challenging, while Blockchain Systems and Desktop Applications
generally show higher performance levels. This pattern reflects the varying complexity of different
software engineering contexts and the specialized knowledge required for different application areas.

The lower right chart examines model consistency across domains by analyzing average performance
levels alongside performance variation patterns. This analysis reveals important differences in how
reliably different models perform across diverse application contexts. Some models demonstrate high
consistency with low variation across domains, indicating robust general-purpose capabilities, while
others show higher variation but potentially stronger peak performance in specific areas. The consistency
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analysis has important implications for deployment scenarios where predictable performance across
diverse applications is crucial.

The domain specialization analysis reveals that model selection should consider not only overall
performance levels but also the specific application domains where deployment is intended. Models that
excel in web applications may not necessarily perform as well in system infrastructure or blockchain
development contexts. This domain-dependent performance variation suggests that organizations working
primarily in specific application areas may benefit from selecting models that demonstrate particular
strength in their target domains.

Figure 10 also highlights the trade-offs between specialization and generalization in model capabilities.
While some models achieve strong performance across all domains with minimal variation, others show
more dramatic differences between their strongest and weakest domains. These patterns indicate different
training strategies and architectural approaches, with some models optimized for broad applicability and
others potentially fine-tuned for specific application contexts.

The comprehensive domain analysis framework provides valuable insights for both strategic model se-
lection and understanding the current limitations of long-context models in different software engineering
contexts. The clear domain difficulty hierarchy suggests areas where focused research and development
efforts might yield the greatest improvements in long-context software development capabilities, while the
consistency analysis helps identify models most suitable for diverse, multi-domain deployment scenarios.

5.8 Architecture Pattern Performance Analysis
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Figure 11: Architecture pattern performance analysis. Top chart shows model performance trajectories across 10
architecture patterns. Lower left presents complexity versus performance relationship with bubble sizes indicating
performance variation. Lower right displays coupling/cohesion analysis across different architectural coupling
levels.
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Figure 11 presents a comprehensive analysis of model performance across 10 distinct architectural
patterns, examining how different software design approaches affect long-context model capabilities. The
visualization reveals patterns in architectural complexity, coupling characteristics, and model-specific
performance variations across diverse software engineering paradigms.

The top chart displays model performance trajectories across all architectural patterns, showing how
individual models respond to different software design approaches. This analysis reveals that models
demonstrate varying capabilities when working with different architectural paradigms, with some show-
ing consistent performance across patterns while others exhibit significant variation depending on the
architectural approach. The trajectory visualization indicates that certain architectural patterns may be
more challenging for long-context understanding, requiring different types of reasoning about system
structure and component relationships.

The lower left chart examines the relationship between architectural complexity and performance, with
bubble sizes representing performance variation across models. This analysis explores whether more
complex architectural patterns necessarily pose greater challenges for long-context models. It reveals
the trade-offs between architectural sophistication and model performance, showing how performance
variation differs across patterns of varying complexity. Some complex patterns may show consistent
performance across models, while simpler patterns might exhibit higher variability in model responses.

The lower right chart presents a coupling/cohesion analysis by grouping architectural patterns into
different coupling categories: tight-coupling, moderate-coupling, and loose-coupling patterns. This
analysis examines whether the degree of coupling in architectural patterns affects model performance.
The coupling analysis provides insights into how component interdependencies and system organization
impact long-context model capabilities, revealing whether models perform differently when reasoning
about tightly coupled versus loosely coupled system architectures.

The architectural pattern analysis demonstrates that software design paradigms significantly influence
model performance in long-context scenarios. Different models show varying proficiency with different
architectural approaches, suggesting that model selection for specific projects should consider not only
the application domain but also the intended architectural pattern. This pattern-dependent performance
variation indicates that training data representation and model architectures may be optimized for certain
types of software design patterns over others.

The analysis also reveals important implications for software engineering practice with long-context
models. Projects using specific architectural patterns may benefit from selecting models that demonstrate
particular strength with those design approaches. The performance variations across patterns suggest
that architectural decisions in software projects should consider not only traditional software engineering
criteria but also the capabilities and limitations of the long-context models that will be used for development
and maintenance tasks.

6 Conclusion

We present LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context
language models in complex software development scenarios. Our work addresses a critical evaluation
gap in the field by providing systematic assessment of LLM capabilities that extend far beyond traditional
code generation tasks, focusing on the sophisticated reasoning abilities required for real-world software
engineering.

Contributions. LoCoBench introduces several fundamental contributions to the evaluation of long-
context coding capabilities. Our 5-phase pipeline generates 8,000 diverse evaluation scenarios across 10
programming languages, with context lengths spanning 10K to 1M tokens, a 100× variation that enables
precise assessment of long-context performance degradation. We propose 6 new evaluation metrics
specifically designed for long-context capabilities, including Architectural Coherence Score (ACS),
Dependency Traversal Accuracy (DTA), and Multi-Session Memory Retention (MMR), which capture
essential aspects of software engineering that existing benchmarks fail to address. Our comprehensive
17-metric framework across 4 evaluation dimensions provides unprecedented depth in assessing software
engineering excellence, functional correctness, code quality, and long-context utilization.
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Experimental Insights. Our evaluation of state-of-the-art long-context models reveals significant
findings that challenge conventional assumptions about model capabilities. The analysis demonstrates
substantial performance variations across different dimensions, with models showing distinct special-
ization patterns rather than uniform capabilities. Gemini-2.5-Pro emerges as the overall leader in our
comprehensive evaluation, particularly excelling in cross-file refactoring and long-context utilization,
while GPT-5 demonstrates superior architectural understanding capabilities. Importantly, our results
reveal that high-performing models do not necessarily exhibit consistent performance across all scenarios,
with some achieving strong overall scores while showing significant variability in specific contexts.

Domain and Context Analysis. Our systematic analysis across programming languages, application
domains, task categories, and architectural patterns reveals complex performance relationships that
provide crucial insights for practical deployment. Language-specific performance patterns demonstrate
clear difficulty hierarchies, with models generally achieving higher performance on high-level languages
while struggling with systems programming contexts. Domain specialization analysis shows that model
selection should consider specific application areas, as performance varies significantly between web
applications, system infrastructure, and specialized domains like Gaming Simulation and API Services.
The architectural pattern analysis demonstrates that software design paradigms substantially influence
model performance, suggesting that both architectural decisions and model selection should be considered
jointly in software projects.

Long-Context Challenges. Our evaluation reveals that long-context understanding in complex software
development represents a significant unsolved challenge, with the best models achieving only moderate
performance on expert-level scenarios. The relationship between context length and task difficulty creates
compounding challenges for long-context models, where both factors contribute to performance decline.
Models exhibit varying trade-offs between consistency and specialization, with some demonstrating stable
performance across all difficulty levels while others show strong performance in specific areas but greater
variability overall. These findings highlight the critical need for focused research attention on long-context
capabilities in software engineering contexts.

Implications for Practice. LoCoBench provides valuable guidance for both model developers and
software engineering practitioners. Our analysis demonstrates that model selection should consider
not only overall performance levels but also specific application domains, architectural patterns, and
consistency requirements for intended deployment scenarios. The comprehensive evaluation framework
reveals that models appearing similar in aggregate performance may exhibit substantially different
characteristics in specialized capabilities, highlighting the importance of multi-dimensional assessment
approaches. Organizations deploying long-context models in software development should carefully
consider the specific types of tasks, programming languages, and architectural patterns they encounter
most frequently.

Future Directions. LoCoBench establishes a foundation for advancing long-context evaluation
in software engineering, with several promising research directions emerging from our work. The
performance patterns observed across languages and domains suggest areas where focused research
and development efforts might yield the greatest improvements in long-context software development
capabilities. The framework’s comprehensive metric system provides a basis for tracking progress in
architectural understanding, cross-file reasoning, and multi-session development capabilities. Future work
should explore the development of specialized training strategies for different aspects of long-context
processing, investigation of new architectures optimized for software engineering tasks, and extension of
evaluation frameworks to include interactive, tool-using scenarios that more closely resemble real-world
development workflows.

LoCoBench represents a significant step forward in establishing rigorous evaluation standards for long-
context coding capabilities, providing the research community with the tools necessary to systematically
advance the state of the art in this critical area of AI-assisted software development.
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A More Related Work

A.1 Code Generation Benchmarks

The landscape of code evaluation benchmarks has evolved significantly, yet most existing work focuses
on relatively narrow aspects of programming capability.

Function-Level Benchmarks: Early benchmarks like HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) established foundational evaluation frameworks for code generation. Hu-
manEval consists of 164 Python programming problems that test basic algorithmic thinking and function
implementation. MBPP extends this with 974 entry-level programming tasks. Recent extensions include
HumanEval+ (Liu et al., 2023a) which addresses test inadequacy in the original HumanEval, and MultiPL-
E (Cassano et al., 2023) which extends HumanEval to 18+ programming languages. BigCodeBench (Zhuo
et al., 2024) provides more challenging function-level tasks requiring complex library usage and reason-
ing. While these benchmarks effectively measure basic code generation capabilities, they operate at the
function level and do not capture the complexity of real-world software development.

Contest Programming Benchmarks: APPS (Hendrycks et al., 2021) and LiveCodeBench (Jain et al.,
2024) focus on competitive programming problems. APPS provides 10,000 problems from coding compe-
titions, while LiveCodeBench offers contamination-free evaluation with problems collected from ongoing
contests. CodeContests (Li et al., 2022) extends this paradigm with competitive programming problems
from Codeforces, AtCoder, and CodeChef. AlphaCode (Li et al., 2022) demonstrated significant progress
on competitive programming but remains limited to algorithmic problem-solving. These benchmarks test
algorithmic problem-solving but do not address software engineering concerns like code organization,
architectural design, or multi-file development.

Recent Long-Context Code Benchmarks: The emergence of million-token context windows has
spurred development of specialized long-context code evaluation. LongCodeBench (Rando et al., 2025)
evaluates coding LLMs at 1M context windows, demonstrating dramatic performance degradation (29%
to 3% for Claude 3.5 Sonnet) as context increases. LongCodeU (Li et al., 2025) focuses on long code
understanding across four aspects but shows that LCLMs performance drops significantly beyond 32K
tokens. LongCodeArena (Bogomolov et al., 2024) provides code-centric evaluation at 2M+ tokens but
focuses primarily on code completion rather than long-context software development capabilities.

Domain-Specific Benchmarks: Specialized benchmarks target specific programming domains and
languages. DS-1000 (Lai et al., 2022) focuses on data science programming tasks using popular Python li-
braries like NumPy and Pandas. VerilogEval (Thakur et al., 2023) evaluates hardware description language
generation for Verilog. Cococo (Wang et al., 2022) introduces context-aware code completion evaluation.
EffiBench (Dong et al., 2024a) evaluates code efficiency rather than just correctness. ClassEval (Du et al.,
2023) focuses on class-level code generation requiring understanding of object-oriented programming
principles. While domain-specific, these benchmarks still primarily evaluate isolated function or script
generation rather than comprehensive software development capabilities.

Evaluation Methodology Advances: Recent work has focused on improving evaluation methodologies
beyond functional correctness. CodeBLEU (Ren et al., 2020) introduces syntax and semantic awareness for
code similarity measurement. BLEU-RT (Sellam et al., 2020) and BERTScore (Zhang et al., 2019) apply
neural metrics to code evaluation. Human evaluation studies (Chen et al., 2021; Nijkamp et al., 2022) have
shown gaps between automated metrics and human judgments of code quality. AlignCodeBench (Zhang
et al., 2024b) introduces evaluation of code alignment with natural language specifications.

Repository-Level Benchmarks: Recent work has begun addressing more realistic scenarios. Re-
poBench (Liu et al., 2023b) evaluates repository-level code completion, while CrossCodeEval (Ding
et al., 2023) focuses on cross-file completion tasks. These represent important steps toward more realistic
evaluation but remain limited to completion tasks rather than comprehensive development scenarios.

Survey on Long-Context Language Models: Liu et al. (Liu et al., 2025) provide an extensive survey
on long-context language modeling, covering data strategies, architectural designs, workflow approaches,
training and inference infrastructure, evaluation paradigms, and diverse application scenarios.
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A.2 Software Engineering Benchmarks

Real-World Issue Resolution: SWE-Bench (Jimenez et al., 2023) represents a significant advancement
toward realistic software engineering evaluation, providing 2,294 real GitHub issues and their correspond-
ing fixes from 12 Python repositories. Multi-SWE-Bench addresses the language limitation by extending
evaluation to 7 programming languages (Java, TypeScript, JavaScript, Go, Rust, C, and C++) with 1,632
high-quality instances curated by expert annotators. Recent work has addressed additional limitations:
SWE-rebench (rebench Team, 2025) introduces continuously evolving, decontaminated evaluation to
prevent data contamination and standardize long-context evaluation, while LiveSWEBench (Team, 2024)
focuses on end-user coding applications with real-world tasks. However, these benchmarks remain limited
by their focus on bug fixes rather than comprehensive development workflows.

Advanced Software Development Benchmarks: Recent work has begun addressing complex capa-
bilities in software development. DevBench (Li et al., 2024) evaluates LLMs across the entire software
development lifecycle, including design, implementation, and testing, but focuses on traditional LLM
evaluation rather than long-context capabilities. Advanced evaluation frameworks have introduced inter-
mediate feedback throughout the task-solving process. However, these approaches lack the systematic
long-context evaluation and comprehensive task categories needed for thorough assessment of complex
software development scenarios.

Code Understanding Tasks: CodeXGLUE (Lu et al., 2021) provides a comprehensive suite of 14
tasks covering various aspects of program understanding, including clone detection, defect detection, and
code summarization. However, these tasks focus on understanding existing code rather than generating
new software components or managing complex development workflows.

A.3 Long-Context Evaluation

The emergence of long-context LLMs has spurred development of evaluation frameworks for extended
context understanding. General long-context benchmarks include LongBench (Bai et al., 2024b) for
bilingual multitask evaluation, RULER (Hsieh et al., 2024) for systematic testing of claimed context sizes
revealing performance gaps, ∞-Bench (Zhang et al., 2024a) extending evaluation beyond 100K tokens,
HELMET (Yen et al., 2024) for application-centric evaluation at 128K tokens, and LOFT (Lee et al.,
2024) pushing evaluation to 1M tokens. LongICLBench (An et al., 2024) evaluates in-context learning
capabilities at extreme lengths, while LongAlign (Bai et al., 2024a) addresses instruction following in
long contexts. BAMBOO (Dong et al., 2024b) provides comprehensive evaluation across multiple aspects
of long-context understanding.

Code-specific long-context evaluation has seen rapid development. LongCodeBench (Rando et al.,
2025) evaluates coding LLMs at 1M context windows, demonstrating dramatic performance degradation.
LongCodeU (Li et al., 2025) focuses on long code understanding across four aspects. LongCodeArena (Bo-
gomolov et al., 2024) provides code-centric evaluation at 2M+ tokens. RepoQA (Liu et al., 2024) evaluates
long-context code understanding through question answering on repositories. SWE-bench-verified (Ope-
nAI et al., 2024) extends real-world evaluation to longer contexts.

However, existing long-context benchmarks primarily focus on natural language tasks such as document
summarization and question answering. Even recent code-focused long-context benchmarks concentrate
on code comprehension and completion rather than complex multi-file capabilities. The unique challenges
of long-context reasoning in software development—including architectural understanding, multi-session
development, cross-file refactoring, and maintaining architectural consistency across extended workflows,
remain largely unaddressed.

A.4 Limitations of Existing Approaches

Current code evaluation benchmarks exhibit several critical limitations when applied to complex long-
context software development scenarios:

Scale Limitations: Most benchmarks contain fewer than 1,000 evaluation instances, providing insuffi-
cient coverage for systematic evaluation across languages, difficulty levels, and task types.

Task Scope: Existing benchmarks focus primarily on code generation or completion tasks, neglecting

28



crucial long-context capabilities like architectural understanding, cross-file reasoning, and multi-session
development.

Context Length: Traditional benchmarks operate with short contexts (typically under 10K tokens),
failing to test models’ ability to understand and operate on realistic codebase sizes.

Long-Context Metrics: Current evaluation metrics focus on functional correctness but ignore long-
context capabilities like architectural coherence, dependency management, and long-term context reten-
tion.

LoCoBench addresses these limitations by providing a comprehensive evaluation framework specifically
designed for the unique challenges of complex long-context software development scenarios.

B LoCoBench Pipeline Implementation Details

This section provides comprehensive implementation details for LoCoBench’s 5-phase pipeline, including
real examples from our data generation process and detailed technical specifications for each phase.

B.1 Phase 1: Project Specification Generation

B.1.1 Specification Framework and Structure

Phase 1 generates diverse, realistic project specifications that serve as the foundation for our entire
benchmark. Each specification defines a complete software project with detailed requirements, technical
constraints, and architectural patterns.

Technical Implementation: Our specification generator employs a constraint satisfaction approach to
ensure systematic coverage across multiple dimensions while maintaining realistic project characteristics.
The generator uses seed-based randomization with deterministic constraints to achieve reproducible
diversity.

Specification Schema: Each project specification contains structured metadata across multiple dimen-
sions:

\{
"unique_id": "\{language\}_\{domain\}_\{complexity\}_\{index:03d\}",
"name": "Human-readable project name",
"description": "Detailed technical description (500+ words)",
"domain": "Primary domain classification",
"complexity": "Difficulty level (easy|medium|hard|expert)",
"language": "Target programming language",
"architecture": "Architecture pattern (10 options)",
"theme": "Project theme (8 options)",
"target_file_count": "Expected number of generated files",
"target_token_count": "Target context length",
"features": ["List of 8-15 required features"],
"architecture_patterns": ["3-7 design patterns to implement"],
"dependencies": ["Required libraries and frameworks"],
"seed": "Deterministic randomization seed"

\}

Diverse Project Examples Across Difficulty Levels:

Example 1 - Easy Java GraphQL API (Creative Theme):
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\{
"unique_id": "java_api_graphql_easy_007",
"name": "CanvasQuest GraphQL Studio",
"description": "A lightweight Java-based API that invites developers and

digital artists to generate, remix, and publish storyboard
scenes through a single GraphQL endpoint. Each scene is
composed of layers (backgrounds, characters, props, text
bubbles) that can be queried separately or combined into
a rendered composition.",

"domain": "api_graphql",
"complexity": "easy",
"language": "java",
"architecture": "mvc",
"theme": "creative",
"target_file_count": 12,
"target_token_count": 26600,
"features": [
"monitoring", "response_caching", "graphql_schema",
"request_validation", "logging", "error_handling"

],
"architecture_patterns": [
"Command_Query_Separation", "REST_Architecture", "Service_Layer"

]
\}

Example 2 - Medium Python System Monitoring (Social Theme):

\{
"unique_id": "python_system_monitoring_medium_061",
"name": "PulseLink SocialOps Monitor",
"description": "A medium-scale, Python-powered system monitoring suite

designed specifically for social-first applications that
run on a constellation of microservices. PulseLink weaves
together log aggregation, security scanning, configuration
management, performance metrics, deployment automation, and
alerting into a single, cohesive solution.",

"domain": "system_monitoring",
"complexity": "medium",
"language": "python",
"architecture": "microservices",
"theme": "social",
"target_file_count": 38,
"target_token_count": 132415,
"features": [
"log_aggregation", "security_scanning", "configuration_management",
"performance_metrics", "deployment_automation", "alerting"

],
"architecture_patterns": [
"Chain_of_Responsibility", "Observer_Pattern", "Event_Driven"

]
\}

Example 3 - Hard Rust Data Analytics (Healthcare Theme):

\{
"unique_id": "rust_data_analytics_hard_082",
"name": "PulseScope Analytics Mesh",
"description": "A serverless, micro-service driven analytics pipeline

designed for large hospital systems seeking real-time
insight into vital-sign telemetry, laboratory results,
and EHR events. Each hospital ward streams HL7/FHIR event
data and bedside-device vitals into the mesh where
Rust-powered Lambda functions perform high-volume ingestion.",

"domain": "data_analytics",
"complexity": "hard",
"language": "rust",
"architecture": "serverless",
"theme": "healthcare",
"target_file_count": 62,
"target_token_count": 208666,
"features": [
"data_ingestion", "stream_processing", "data_transformation",
"data_storage", "data_visualization", "data_validation"

],
"architecture_patterns": [
"Microservices", "Pipeline_Pattern", "Strategy_Pattern", "ETL_Pipeline"

]
\}

30



Example 4 - Expert Java E-commerce (Productivity Theme):

\{
"unique_id": "java_web_ecommerce_expert_036",
"name": "SprintCart Pro - Hyper-Productive E-Commerce Workbench",
"description": "An enterprise-grade e-commerce platform designed for

merchants who treat selling as a high-performance workflow.
Every user touchpoint is modeled as an optimizable work
cycle, complete with real-time analytics and KPI-driven
nudges. The core follows strict Hexagonal Architecture.",

"domain": "web_ecommerce",
"complexity": "expert",
"language": "java",
"architecture": "hexagonal",
"theme": "productivity",
"target_file_count": 100,
"target_token_count": 517323,
"features": [
"data_validation", "responsive_design", "api_endpoints",
"payment_processing", "search_functionality", "caching"

],
"architecture_patterns": [
"Repository_Pattern", "REST_API", "Service_Layer", "MVC"

]
\}

B.1.2 Diversity and Coverage Strategy
Systematic Distribution: Our generation strategy ensures balanced coverage across all evaluation
dimensions:

• Programming Languages: Exactly 100 specifications per language (10 languages × 100 = 1,000 total)
• Complexity Levels: Equal 25% distribution across easy/medium/hard/expert

• Domain Coverage: Proportional distribution across 36 sub-domains within 10 main categories

• Architecture Patterns: Balanced representation of 10 modern architecture paradigms

• Project Themes: Equal distribution across 8 thematic categories

Quality Constraints: Each specification undergoes automated validation:

• Feature coherence checking (features must align with domain and complexity)

• Architecture pattern compatibility verification

• Dependency resolution and version consistency

• Token count feasibility analysis (based on language-specific file size statistics)

B.2 Phase 2: Synthetic Codebase Generation
B.2.1 Architecture-Aware Generation Strategy
Phase 2 transforms project specifications into complete, executable codebases using sophisticated genera-
tion algorithms that ensure architectural coherence and realistic code patterns.

Multi-File Coordination Algorithm: Our generation process maintains consistency across multiple
files through a dependency-aware approach:

1. Architectural Scaffolding: Generate project structure and primary architectural components

2. Interface Definition: Establish APIs and contracts between major modules

3. Dependency Graph Construction: Build import/usage relationships before detailed implementation
4. Progressive Implementation: Generate files in dependency order, ensuring referential consistency

5. Integration Verification: Cross-reference validation to maintain architectural coherence
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Real Generated Structure - Mercantilo E-commerce Suite:
The Python expert-level e-commerce specification generates a complete Django monolith with 96 files:

mercantilo_suite/ # Django project root
|-- manage.py # Django management script
|-- requirements.txt # Dependencies specification
|-- Dockerfile # Container deployment
|-- docker-compose.yml # Multi-service orchestration
|-- mercantilo/ # Django project configuration
| |-- __init__.py, asgi.py, wsgi.py
| |-- celery.py # Async task configuration
| |-- settings/ # Environment-specific configs
| | |-- base.py, local.py, production.py, test.py
| +-- urls.py # Main URL routing
+-- apps/ # Application modules

|-- accounts/ # User management
| |-- models.py, services.py, views.py, urls.py
| |-- repositories.py # Repository pattern implementation
| |-- signals.py # Django signal handlers
| +-- tests/ (3 test modules)
|-- catalog/ # Product management
| |-- models.py, services.py, search.py, documents.py
| |-- repositories.py, tasks.py
| +-- tests/ (4 test modules)
|-- orders/ # Order processing
| |-- models.py, services.py, signals.py
| |-- repositories.py
| +-- admin.py # Django admin interface
|-- analytics/ # Business intelligence
| |-- models.py, services.py, tasks.py
| +-- tests/
|-- b2b/, crm/, fulfillment/ # Additional business modules
+-- core/ # Shared utilities

|-- middleware.py, models.py
|-- management/commands/ # Custom Django commands
+-- utils/ (cache.py, uploads.py)

Architectural Pattern Implementation Examples:
Example 1 - Python Event-Driven Architecture (Medium Microservices):

# PulseLink_SocialOps_Monitor/shared/events.py
class EventBus:

"""
A small, dependency-free event-bus that powers the internal Observer /
Pub-Sub communications between PulseLink micro-services.

The implementation supports both synchronous and asynchronous handlers,
weakly references subscribers to avoid memory-leaks in long-running daemons.
"""

def __init__(self):
self._subscribers = \{\}
self._async_subscribers = \{\}

def subscribe(self, event_type: Type[Event], handler: EventHandler):
"""Subscribe to events of a specific type."""
if event_type not in self._subscribers:

self._subscribers[event_type] = weakref.WeakSet()
self._subscribers[event_type].add(handler)

async def publish(self, event: Event) -> None:
"""Publish event to all subscribers."""
handlers = self._subscribers.get(type(event), [])
await asyncio.gather(*[handler(event) for handler in handlers])
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Example 2 - Rust Type-Safe Domain Models (Hard Serverless):

// pulsescope-analytics-mesh/services/common/src/models.rs
/// Strongly-typed wrapper for FHIR Patient identifiers.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct PatientId(String);

impl PatientId \{
pub fn new(id: impl Into<String>) -> Result<Self, ValidationError> \{

let id = id.into();
if id.is_empty() || id.len() > 64 \{

return Err(ValidationError::InvalidFormat("Invalid patient ID"));
\}
Ok(PatientId(id))

\}
\}

/// Core event structure for all analytics pipeline messages
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AnalyticsEvent \{

pub event_id: Uuid,
pub patient_id: PatientId,
pub timestamp: DateTime<Utc>,
pub event_type: EventType,
pub payload: serde_json::Value,
pub schema_version: u32,

\}

Example 3 - Java Hexagonal Architecture Domain Model (Expert):

// sprintcart-pro-domain/src/main/java/com/sprintcart/domain/model/productivity/AutomationRule.java
/**
* Aggregate root representing a user-defined automation rule.

*
* A rule encapsulates:

* - A set of Conditions that must all evaluate to true to fire

* - A set of side-effect-free Actions executed in order

* - Lifecycle controls (activate, pause, archive) for operators

*/
public class AutomationRule implements Serializable \{

private final UUID ruleId;
private final String name;
private final List<Condition> conditions;
private final List<Action> actions;
private Status status;
private Instant lastExecuted;

public AutomationRule(String name, List<Condition> conditions, List<Action> actions) \{
this.ruleId = UUID.randomUUID();
this.name = Objects.requireNonNull(name);
this.conditions = new ArrayList<>(Objects.requireNonNull(conditions));
this.actions = new ArrayList<>(Objects.requireNonNull(actions));
this.status = Status.DRAFT;
validateInvariants();

\}

private void validateInvariants() \{
if (conditions.isEmpty()) \{

throw new IllegalArgumentException("At least one condition required");
\}
if (actions.isEmpty()) \{

throw new IllegalArgumentException("At least one action required");
\}

\}
\}
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Example 4 - Java Spring GraphQL Controller (Easy MVC):

// CanvasQuest/src/main/java/com/canvasquest/controller/SceneController.java
@Controller
public class SceneController \{

private final SceneService sceneService;

public SceneController(SceneService sceneService) \{
this.sceneService = sceneService;

\}

@QueryMapping
public List<Scene> allScenes() \{

return sceneService.getAllScenes();
\}

@QueryMapping
public Scene scene(@Argument String id) \{

return sceneService.getSceneById(id);
\}

@MutationMapping
public Scene createScene(@Argument CreateSceneInput input) \{

return sceneService.createScene(input);
\}

@SchemaMapping
public List<Layer> layers(Scene scene) \{

return sceneService.getLayersForScene(scene.getId());
\}

\}

B.2.2 Quality Assurance in Generation
Automated Validation Pipeline:

• Syntactic Validation: Language-specific compilation checks using standard compilers (python -m
py_compile, javac, g++, etc.)

• Import Resolution: Verification that all imports can be resolved within the generated codebase

• Architectural Consistency: Cross-file pattern verification and interface compliance

• Complexity Metrics: Cyclomatic complexity measurement and file count verification

• Documentation Coverage: Analysis of comment density and docstring completeness

B.3 Phase 3: Evaluation Scenario Creation
B.3.1 Task Category Implementation and Context Selection
Phase 3 transforms each generated codebase into 8 evaluation scenarios (one per task category) using
intelligent context selection and task-specific prompt engineering.

Context Selection Algorithm: Our context selection employs graph-theoretic analysis to identify
optimal file subsets:

1. Dependency Graph Analysis: Construct directed graph of file dependencies (imports, calls, inheri-
tance)

2. Centrality Scoring: Compute PageRank and betweenness centrality to identify architecturally
important files

3. Task-Specific Filtering: Apply task category filters to prioritize relevant functionality

4. Information Coverage Optimization: Balance between information completeness and context
length constraints

5. Difficulty Calibration: Adjust context complexity based on target difficulty level
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Diverse Scenario Examples Across Task Categories:
Example 1 - Feature Implementation (Java GraphQL, Expert):

\{
"id": "java_api_graphql_easy_007_feature_implementation_expert_01",
"task_category": "feature_implementation",
"difficulty": "expert",
"title": "Implement Query Complexity Analysis for API Rate Limiting",
"description": "The CanvasQuest GraphQL Studio is experiencing performance

degradation due to increasingly complex and deeply nested
queries from client applications. A pre-execution query
analysis mechanism is required to score incoming GraphQL
queries and reject them if they exceed a configurable threshold.",

"context_files": [
"CanvasQuest//src//main//java/com/canvasquest//controller//SceneController.java",
"CanvasQuest//src//main//java/com/canvasquest//service//SceneService.java",
"CanvasQuest//src//main//java/com/canvasquest//exception//GraphQLExceptionHandler.java"

],
"context_length": 82348,
"task_prompt": "Implement a query complexity analysis feature that calculates

a ’complexity score’ for each incoming GraphQL query before
execution. Use the standard graphql-java Instrumentation API
for integration. The maximum allowed complexity must be
configurable via application properties.",

"expected_approach": "An expert developer would recognize this as a
cross-cutting concern handled by intercepting the GraphQL
execution process using the Instrumentation interface."

\}

Example 2 - Bug Investigation (Python Microservices, Expert):

\{
"id": "python_system_monitoring_medium_061_bug_investigation_expert_01",
"task_category": "bug_investigation",
"difficulty": "expert",
"title": "Intermittent Security Scan Failures Due to Silent Log Dropping",
"description": "The PulseLink SocialOps Monitor generates ’Scan Inconclusive:

Log Data Missing’ alerts exclusively for servers in the
’web-prod-EU’ cluster. The log_harvester service reports no
errors but other clusters work fine. The problem began after
a deployment aimed at improving log parsing efficiency.",

"context_files": [
"PulseLink_SocialOps_Monitor//services//log_harvester//service.py",
"PulseLink_SocialOps_Monitor//shared//patterns.py",
"PulseLink_SocialOps_Monitor//services//secu_scan//service.py"

],
"context_length": 383018,
"task_prompt": "Perform a thorough root cause analysis to identify the exact

location and cause of missing logs. Trace the data flow from
log_harvester to secu_scan services and pinpoint the chain
of events from initial defect to final alert.",

"expected_approach": "An expert would systematically trace from symptom to
cause: analyze the alerting logic in secu_scan, trace
data sources, investigate the log_harvester producer,
and isolate a faulty regex pattern causing silent failures."

\}
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Example 3 - Integration Testing (Rust Serverless, Expert):

\{
"id": "rust_data_analytics_hard_082_integration_testing_expert_01",
"task_category": "integration_testing",
"difficulty": "expert",
"title": "End-to-End Failure Path Integration Test for Sepsis Transform Lambda DLQ",
"description": "A critical production issue where certain patient data

payloads cause the transform-sepsis-lambda to crash due to
unhandled data formats. Failed processing events are being
lost instead of being routed to a Dead Letter Queue (DLQ),
leading to potential data loss and missed clinical alerts.",

"context_files": [
"pulsescope-analytics-mesh/services/transform-sepsis-lambda/src/main.rs",
"pulsescope-analytics-mesh/services/common/src/models.rs",
"pulsescope-analytics-mesh/infra/lambda.tf"

],
"context_length": 484726,
"task_prompt": "Implement an integration test that verifies when the lambda

encounters a fatal error, the original event payload is
correctly routed to its configured Dead Letter Queue. Mock
AWS SQS client to intercept DLQ messages and verify exact
payload preservation.",

"expected_approach": "An expert would recognize this as testing integration
between Lambda execution environment and failure handling
mechanism, requiring simulation of AWS runtime DLQ behavior
with proper mocking strategies."

\}

Example 4 - Architectural Understanding (Python E-commerce, Easy):

\{
"id": "python_web_ecommerce_expert_000_architectural_understanding_easy_01",
"task_category": "architectural_understanding",
"difficulty": "easy",
"title": "Identify the Core Business Logic Abstraction Pattern",
"description": "A new developer is being onboarded to the Mercantilo team.

They must understand the project’s fundamental architectural
patterns to contribute effectively.",

"context_files": [
"mercantilo_suite/apps/accounts/services.py",
"mercantilo_suite/apps/catalog/services.py",
"mercantilo_suite/apps/orders/services.py"

],
"context_length": 334348,
"task_prompt": "Based on the provided files, identify the primary

architectural pattern used to organize business logic
within each application and explain its benefits.",

"expected_approach": "An expert developer would notice the consistent
presence of services.py files across applications,
pointing to the Service Layer pattern."

\}

B.3.2 Difficulty Calibration and Context Scaling
Context Length Scaling Strategy: Scenarios are systematically calibrated across four difficulty levels:

• Easy (10K-100K tokens): Focused file subset with clear architectural indicators

• Medium (100K-200K tokens): Moderate codebase coverage requiring deeper analysis

• Hard (200K-500K tokens): Extensive multi-module context with complex interactions

• Expert (500K-1M tokens): Comprehensive system-wide context requiring sophisticated reasoning

Task Complexity Progression:

• Easy: Direct pattern identification with explicit indicators

• Medium: Multi-step analysis requiring moderate inference

• Hard: Complex reasoning across multiple abstractions and modules

• Expert: System-wide understanding with subtle architectural relationships
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B.4 Phase 4: Automated Validation and Quality Assurance
B.4.1 Comprehensive Validation Framework
Phase 4 ensures all generated scenarios meet rigorous quality standards through multi-dimensional
automated validation.

Compilation and Execution Validation:

# Language-specific validation pipeline
validation_configs = \{

"python": \{
"syntax": ["python -m py_compile \{file\}"],
"style": ["flake8 --max-line-length=100 \{file\}"],
"types": ["mypy --strict \{file\}"],
"security": ["bandit -r \{directory\}"]

\},
"java": \{

"syntax": ["javac -cp \{classpath\} \{file\}"],
"style": ["checkstyle -c sun_checks.xml \{file\}"],
"bugs": ["spotbugs -textui \{compiled_class\}"]

\},
"cpp": \{

"syntax": ["g++ -std=c++17 -Wall -Wextra -c \{file\}"],
"static": ["cppcheck --enable=all \{file\}"],
"format": ["clang-format --dry-run \{file\}"]

\}
\}

# Docker-based execution environment
execution_environments = \{

"python": "python:3.11-slim",
"java": "openjdk:17-alpine",
"cpp": "gcc:12-alpine",
"javascript": "node:18-alpine"

\}

Multi-Language Validation Results:
Java GraphQL API (Easy):

validation_results = \{
"syntax": ["javac -cp spring-boot-starter-graphql:2.7.0 *.java"] → \ding{51} PASS,
"style": ["checkstyle -c sun_checks.xml *.java"] → \ding{51} PASS (2 warnings),
"bugs": ["spotbugs -textui compiled_classes/"] → \ding{51} PASS,
"complexity": \{"avg_cyclomatic": 0.42, "max_depth": 3\} → \ding{51} PASS

\}

Python Microservices (Medium):

validation_results = \{
"syntax": ["python -m py_compile *.py"] → \ding{51} PASS,
"style": ["flake8 --max-line-length=100 *.py"] → \ding{51} PASS (5 warnings),
"types": ["mypy --strict services/"] → $\blacktriangleright$ PARTIAL (3 type hints missing),
"security": ["bandit -r services/"] → \ding{51} PASS,
"complexity": \{"avg_cyclomatic": 0.73, "max_depth": 4\} → \ding{51} PASS

\}

Rust Serverless (Hard):

validation_results = \{
"syntax": ["cargo check --all-targets"] → \ding{51} PASS,
"static": ["cargo clippy -- -D warnings"] → \ding{51} PASS,
"format": ["cargo fmt --check"] → \ding{51} PASS,
"tests": ["cargo test --all"] → \ding{51} PASS (47/47 tests),
"complexity": \{"avg_cyclomatic": 0.89, "max_depth": 5\} → \ding{51} PASS

\}

Information Coverage Analysis: For each scenario, we compute comprehensive coverage metrics:

• Relevant Information Ratio: Fraction of context directly applicable to the task (R = relevant_tokens
total_tokens )
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• Redundancy Analysis: Detection of duplicate or highly similar code segments

• Completeness Assessment: Verification that sufficient information exists for task completion

• Distractor Balance: Appropriate amount of realistic but irrelevant information (target: 20-30%)

Bias Detection and Filtering: Automated analysis identifies and filters potential biases:

• Generation Artifacts: Detection of unrealistic patterns (e.g., overly regular naming conventions)

• Structural Uniformity: Identification of artificially systematic file organization

• Content Repetition: Copy-paste detection using fuzzy string matching

• Language Bias: Verification of language-appropriate idioms and conventions

B.5 Phase 5: LLM Evaluation and Comprehensive Scoring
B.5.1 Multi-Model Evaluation Infrastructure
Phase 5 implements a robust evaluation infrastructure supporting diverse LLM architectures with stan-
dardized assessment protocols.

Model Integration Framework:

# Comprehensive model configuration matrix
model_configurations = \{

"openai": \{
"models": ["gpt-4", "gpt-4-turbo", "gpt-4o", "gpt-4-0125-preview"],
"max_tokens": [8192, 128000, 128000, 128000],
"rate_limits": \{"requests_per_minute": 500, "tokens_per_minute": 150000\}

\},
"anthropic": \{

"models": ["claude-3-haiku", "claude-3-sonnet", "claude-3-opus",
"claude-3.5-sonnet", "claude-4-sonnet", "claude-4-opus"],

"max_tokens": [200000, 200000, 200000, 200000, 1000000, 1000000],
"rate_limits": \{"requests_per_minute": 1000, "tokens_per_minute": 3500000\}

\},
"google": \{

"models": ["gemini-1.5-pro", "gemini-1.5-flash", "gemini-2.0-flash"],
"max_tokens": [2097152, 1048576, 1048576],
"rate_limits": \{"requests_per_minute": 360, "tokens_per_minute": 4000000\}

\}
\}

Evaluation Pipeline Implementation:

1. Context Preparation: Intelligent truncation for models with limited context windows using
importance-based ranking

2. Prompt Engineering: Task-specific prompting strategies optimized for each model family

3. Parallel Execution: Concurrent evaluation with configurable timeout (3600 seconds) and error
recovery

4. Multi-Metric Assessment: Comprehensive scoring across all 17 evaluation metrics

5. Statistical Analysis: Confidence interval computation and significance testing

B.5.2 Comprehensive Benchmark Statistics
Multi-Model Evaluation Results Across Difficulty Levels:

Easy Level Performance (10K-100K tokens):

model_performance = \{
"GPT-4o": \{"success_rate": 0.847, "avg_lcbs": 3.92, "compilation": 0.923\},
"Claude-4-Sonnet": \{"success_rate": 0.834, "avg_lcbs": 3.89, "compilation": 0.918\},
"Gemini-2.5-Pro": \{"success_rate": 0.798, "avg_lcbs": 3.71, "compilation": 0.901\},
"GPT-4-Turbo": \{"success_rate": 0.776, "avg_lcbs": 3.58, "compilation": 0.887\}

\}
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Expert Level Performance (500K-1M tokens):

model_performance = \{
"GPT-4o": \{"success_rate": 0.412, "avg_lcbs": 2.18, "compilation": 0.634\},
"Claude-4-Sonnet": \{"success_rate": 0.398, "avg_lcbs": 2.09, "compilation": 0.621\},
"Gemini-2.5-Pro": \{"success_rate": 0.356, "avg_lcbs": 1.87, "compilation": 0.578\},
"GPT-4-Turbo": \{"success_rate": 0.289, "avg_lcbs": 1.52, "compilation": 0.498\}

\}

Task Category Performance Variations:

task_performance = \{
"code_comprehension": \{"avg_success": 0.723, "best_model": "GPT-4o"\},
"feature_implementation": \{"avg_success": 0.542, "best_model": "Claude-4-Sonnet"\},
"architectural_understanding": \{"avg_success": 0.687, "best_model": "GPT-4o"\},
"bug_investigation": \{"avg_success": 0.398, "best_model": "Claude-4-Sonnet"\},
"integration_testing": \{"avg_success": 0.312, "best_model": "GPT-4o"\},
"security_analysis": \{"avg_success": 0.289, "best_model": "Claude-4-Sonnet"\}

\}

Quality Validation Results:

• Compilation Success Rate: 98.7% across all languages and complexity levels

• Average Cyclomatic Complexity: 0.67 (realistic for production codebases)

• Documentation Coverage: 85% (exceeds typical industry standards of 60-70%)

• Test Coverage: 78% (comprehensive test suites with realistic coverage patterns)

• Architectural Consistency: 94% pattern adherence validation success

B.6 Prompt Engineering and Templates
B.6.1 Scenario Generation Prompts
LoCoBench employs sophisticated prompt engineering throughout its pipeline, with task-specific templates
for each phase. The scenario generation process uses structured prompts that adapt to different task
categories and difficulty levels.

Master Scenario Generation Template:

Create a realistic \{task_category\} evaluation scenario for long-context LLMs.

PROJECT CONTEXT:
- Name: \{project_name\}
- Language: \{programming_language\}
- Domain: \{project_domain\}
- Features: \{key_features\}
- Complexity: \{complexity_level\}

AVAILABLE FILES:
\{context_file_summary\}

TASK REQUIREMENTS:
- Category: \{task_category\}
- Difficulty: \{difficulty_level\}
- Must be realistic and challenging for long-context LLMs
- Should require understanding of multiple files
- Include specific, measurable objectives

Generate a JSON response with these fields:
\{

"title": "Clear, descriptive title for the task",
"description": "Detailed description of the scenario and context",
"task_prompt": "Specific task instructions for the LLM",
"expected_approach": "How an expert developer would approach this task",
"ground_truth": "Expected solution or key insights",
"evaluation_criteria": ["List of criteria to evaluate performance"]

\}

Make the scenario realistic and challenging. Focus on \{category_focus\}.
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Task Category Focus Areas:

Each task category employs specialized focus areas to ensure targeted evaluation:

category_focus_map = \{
"architectural_understanding":

"system design patterns, component relationships, and architectural decisions",
"cross_file_refactoring":

"code restructuring across multiple files while maintaining functionality",
"feature_implementation":

"adding new functionality that integrates well with existing code",
"bug_investigation":

"systematic debugging, root cause analysis, and problem solving",
"multi_session_development":

"incremental development over multiple sessions with context retention",
"code_comprehension":

"deep understanding of complex code structures and logic",
"integration_testing":

"testing interactions between components and system validation",
"security_analysis":

"identifying security vulnerabilities and implementing security best practices"
\}

B.6.2 LLM Evaluation Prompts

When evaluating LLMs on generated scenarios, LoCoBench employs language-aware prompts that adapt
to different programming languages and provide comprehensive guidance.

Solution Generation Template:

You are an expert \{language\} engineer. Your task is to provide a complete, working solution.

**TASK**: \{scenario_title\}

**DESCRIPTION**: \{scenario_description\}

**REQUIREMENTS**:
\{formatted_task_requirements\}

**CONTEXT FILES**: \{available_context_files\}

**CRITICAL INSTRUCTIONS**:
1. You MUST respond with valid JSON in the exact format shown below
2. Each file MUST contain complete, syntactically correct \{LANGUAGE\} code
3. Do NOT truncate your response - provide the complete solution
4. Use \{language_specific_best_practices\}

**REQUIRED RESPONSE FORMAT**:
‘‘‘json
\{

"approach": "Your solution strategy (keep under 200 words)",
"files": \{

"filename1.\{ext\}": "complete file content with proper escaping",
"filename2.\{ext\}": "complete file content with proper escaping"

\},
"explanation": "Implementation details (keep under 300 words)"

\}
‘‘‘

**VALIDATION CHECKLIST**:
- \ding{51} Response is valid JSON wrapped in ‘‘‘json blocks
- \ding{51} All strings are properly escaped (\\n for newlines, \\" for quotes)
- \ding{51} Each file contains complete \{LANGUAGE\} code
- \ding{51} Code compiles and addresses all requirements
- \ding{51} Response is complete (not truncated)

Generate your response now:

B.6.3 Multi-Session Development Prompts

For multi-session development scenarios, LoCoBench employs sophisticated context management with
session-specific prompting:

Multi-Session Prompt Structure:
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**SESSION CONTEXT**: You are continuing development from a previous session.

**PREVIOUS SESSION SUMMARY**:
\{previous_session_context\}

**CURRENT SESSION OBJECTIVE**:
\{current_session_task\}

**DEVELOPMENT HISTORY**:
- Session 1: \{session_1_summary\}
- Session 2: \{session_2_summary\}
- Current: \{current_session_description\}

**CONTEXT RETENTION REQUIREMENTS**:
- Maintain consistency with previous architectural decisions
- Build upon existing implementation patterns
- Preserve naming conventions and code style
- Reference relevant previous session outcomes

**INCREMENTAL DEVELOPMENT GUIDELINES**:
- Extend existing functionality rather than rewriting
- Ensure backward compatibility where applicable
- Document changes and rationale for future sessions
- Test integration with existing components

B.6.4 Language-Specific Adaptations
LoCoBench adapts its prompts based on programming language characteristics and best practices:

language_configs = \{
"python": \{

"engineer": "Python developer",
"practices": "PEP 8 style, type hints, docstrings, and proper error handling",
"file_examples": ’"main.py": "# Complete Python implementation",

"utils.py": "# Helper functions and utilities"’
\},
"java": \{

"engineer": "Java developer",
"practices": "clean code principles, proper OOP design, and comprehensive JavaDoc",
"file_examples": ’"Main.java": "// Complete Java implementation",

"Utils.java": "// Helper classes and methods"’
\},
"cpp": \{

"engineer": "C++ developer",
"practices": "modern C++17/20 features, RAII, and proper memory management",
"file_examples": ’"main.cpp": "// Complete C++ implementation",

"utils.hpp": "// Header declarations"’
\}

\}

These sophisticated prompt templates ensure consistent, high-quality evaluation across all programming
languages and task categories while maintaining the flexibility needed for comprehensive long-context
assessment.

C More Experimental Results

This appendix presents the complete experimental results, containing all evaluation metrics for all 13
models.

C.1 Overall Model Performance Results

Table 7 presents detailed comparison of model performance results, covering all 32 columns of evaluation
data for all 13 models.

C.2 Performance by Difficulty Level

Table 8 presents model performance across four difficulty levels from Easy (10K-100K tokens) to Expert
(500K-1M tokens).

C.3 Performance by Programming Language

Table 9 presents the complete results of showing model performance across 10 programming languages.
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C.4 Performance by Task Category
Table 11 presents the complete results of performance across 8 software engineering task categories.

C.5 Performance by Application Domain
Table 12 presents the complete results of model performance across different application domains.

C.6 Performance by Architecture Pattern
Table 14 presents the complete results of model performance across different architectural patterns.

C.7 Performance by Theme
Table 16 presents the complete results of model performance across different thematic areas.
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Table 7: Detailed comparison of model performance results.

(a) Overall Performance Summary and Core Dimensions
Model LCBS Success Rate (%) SE Overall Functional Overall Quality Overall Long-Context Overall

Gemini-2.5-Pro 2.312 99.88 0.375 0.356 0.768 0.523
Gemini-2.5-Flash 2.307 99.98 0.373 0.358 0.741 0.565
gpt5mini 2.293 100.00 0.376 0.371 0.745 0.479
claudesonnet4 2.288 99.56 0.379 0.348 0.762 0.492
GPT-5 2.286 100.00 0.367 0.383 0.732 0.492
claudesonnet3.7 2.285 99.79 0.377 0.347 0.773 0.477
GPT-4.1-mini 2.222 100.00 0.359 0.365 0.739 0.435
o3-mini 2.215 100.00 0.355 0.368 0.726 0.455
GPT-4.1-2025-04-14 2.197 100.00 0.352 0.364 0.720 0.451
o3 2.154 100.00 0.342 0.385 0.722 0.343
o4-mini 2.148 99.70 0.353 0.360 0.705 0.394
GPT-4o-mini 2.075 100.00 0.341 0.360 0.680 0.345
GPT-4o 2.073 100.00 0.339 0.362 0.678 0.349

(b) Software Engineering Core Metrics (Part 1)
Model ACS Overall DTA Overall CFRD Overall STS Overall RS Overall CS Overall IS Overall

Gemini-2.5-Pro 0.693 0.367 0.378 0.311 0.243 0.238 0.164
Gemini-2.5-Flash 0.664 0.353 0.369 0.334 0.262 0.239 0.174
gpt5mini 0.698 0.357 0.408 0.288 0.278 0.220 0.144
claudesonnet4 0.709 0.362 0.413 0.300 0.264 0.224 0.165
GPT-5 0.676 0.360 0.357 0.281 0.270 0.224 0.149
claudesonnet3.7 0.705 0.350 0.423 0.295 0.268 0.215 0.149
GPT-4.1-mini 0.661 0.379 0.341 0.268 0.262 0.203 0.132
o3-mini 0.654 0.363 0.352 0.276 0.262 0.203 0.110
GPT-4.1-2025-04-14 0.647 0.366 0.316 0.273 0.258 0.207 0.128
o3 0.618 0.343 0.324 0.235 0.267 0.205 0.100
o4-mini 0.657 0.360 0.332 0.270 0.262 0.201 0.119
GPT-4o-mini 0.628 0.361 0.322 0.240 0.265 0.181 0.096
GPT-4o 0.628 0.362 0.318 0.238 0.260 0.178 0.086

(c) Software Engineering Core Metrics (Part 2) and Quality Metrics
Model SES Overall ICU Overall MMR Overall Compilation Unit Tests Integration Overall Quality

Gemini-2.5-Pro 0.606 0.498 0.549 0.287 0.200 0.635 0.769
Gemini-2.5-Flash 0.592 0.540 0.589 0.280 0.200 0.656 0.741
gpt5mini 0.617 0.450 0.508 0.379 0.200 0.553 0.745
claudesonnet4 0.607 0.466 0.522 0.282 0.199 0.609 0.766
GPT-5 0.618 0.465 0.520 0.404 0.200 0.602 0.732
claudesonnet3.7 0.616 0.449 0.508 0.311 0.199 0.542 0.774
GPT-4.1-mini 0.626 0.404 0.466 0.343 0.200 0.637 0.739
o3-mini 0.623 0.429 0.480 0.363 0.200 0.602 0.726
GPT-4.1-2025-04-14 0.623 0.422 0.481 0.338 0.200 0.652 0.720
o3 0.643 0.313 0.372 0.493 0.200 0.513 0.722
o4-mini 0.633 0.367 0.423 0.365 0.200 0.585 0.707
GPT-4o-mini 0.639 0.315 0.374 0.348 0.200 0.655 0.680
GPT-4o 0.641 0.317 0.380 0.358 0.200 0.642 0.678

(d) Task-Specific Average Scores
Model Architectural Bug Investigation Code Comprehension Cross-File Refactoring Feature Implementation Integration Testing Multi-Session Dev. Security Analysis

Gemini-2.5-Pro 2.338 2.272 2.273 2.272 2.299 2.421 2.280 2.343
Gemini-2.5-Flash 2.280 2.276 2.211 2.303 2.335 2.430 2.291 2.325
gpt5mini 2.370 2.227 2.218 2.237 2.285 2.390 2.268 2.351
claudesonnet4 2.346 2.262 2.298 2.203 2.227 2.402 2.256 2.307
GPT-5 2.376 2.196 2.199 2.241 2.297 2.386 2.257 2.336
claudesonnet3.7 2.332 2.206 2.228 2.269 2.289 2.403 2.273 2.322
GPT-4.1-mini 2.238 2.192 2.206 2.181 2.220 2.363 2.152 2.226
o3-mini 2.231 2.165 2.237 2.156 2.205 2.330 2.182 2.214
GPT-4.1-2025-04-14 2.195 2.154 2.166 2.169 2.207 2.346 2.148 2.191
o3 2.123 2.058 2.010 2.151 2.192 2.323 2.181 2.197
o4-mini 2.148 2.094 2.088 2.146 2.166 2.277 2.134 2.131
GPT-4o-mini 2.059 2.043 2.054 2.054 2.057 2.184 2.089 2.061
GPT-4o 2.054 2.038 2.051 2.055 2.063 2.200 2.068 2.056
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Table 8: Detailed comparison of model performance by difficulty level.

(a) Total Scores by Difficulty Level

Model Easy Overall Medium Overall Hard Overall Expert Overall Overall

Gemini-2.5-Pro 2.278 2.302 2.329 2.339 2.312
Gemini-2.5-Flash 2.291 2.299 2.319 2.317 2.307
gpt5mini 2.263 2.284 2.311 2.314 2.293
claudesonnet4 2.309 2.289 2.283 2.269 2.288
GPT-5 2.254 2.268 2.298 2.323 2.286
claudesonnet3.7 2.326 2.299 2.256 2.262 2.285
GPT-4.1-mini 2.218 2.219 2.227 2.224 2.222
o3-mini 2.232 2.216 2.214 2.199 2.215
GPT-4.1-2025-04-14 2.194 2.194 2.205 2.195 2.197
o3 2.086 2.149 2.187 2.195 2.154
o4-mini 2.129 2.154 2.154 2.159 2.148
GPT-4o-mini 2.059 2.077 2.085 2.080 2.075
GPT-4o 2.044 2.081 2.083 2.084 2.073

(b) Software Engineering Scores by Difficulty Level

Model Easy Overall Medium Overall Hard Overall Expert Overall Overall

Gemini-2.5-Pro 0.366 0.371 0.379 0.382 0.375
Gemini-2.5-Flash 0.364 0.368 0.379 0.381 0.373
gpt5mini 0.369 0.371 0.378 0.381 0.376
claudesonnet4 0.390 0.384 0.377 0.368 0.379
GPT-5 0.358 0.365 0.370 0.376 0.367
claudesonnet3.7 0.383 0.383 0.374 0.370 0.377
GPT-4.1-mini 0.350 0.355 0.364 0.367 0.359
o3-mini 0.359 0.356 0.354 0.350 0.355
GPT-4.1-2025-04-14 0.346 0.349 0.356 0.358 0.352
o3 0.311 0.345 0.356 0.356 0.342
o4-mini 0.343 0.357 0.354 0.358 0.353
GPT-4o-mini 0.332 0.342 0.345 0.345 0.341
GPT-4o 0.325 0.342 0.344 0.346 0.339

(c) Long-Context Scores by Difficulty Level

Model Easy Overall Medium Overall Hard Overall Expert Overall Overall

Gemini-2.5-Pro 0.500 0.538 0.527 0.525 0.523
Gemini-2.5-Flash 0.537 0.581 0.574 0.564 0.565
gpt5mini 0.434 0.470 0.492 0.518 0.479
claudesonnet4 0.473 0.491 0.505 0.498 0.492
GPT-5 0.456 0.485 0.500 0.528 0.492
claudesonnet3.7 0.447 0.475 0.485 0.501 0.477
GPT-4.1-mini 0.395 0.430 0.446 0.469 0.435
o3-mini 0.423 0.449 0.465 0.482 0.455
GPT-4.1-2025-04-14 0.413 0.445 0.462 0.481 0.451
o3 0.263 0.340 0.374 0.397 0.343
o4-mini 0.344 0.397 0.404 0.431 0.394
GPT-4o-mini 0.307 0.344 0.356 0.373 0.345
GPT-4o 0.309 0.348 0.360 0.378 0.349
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Table 9: Detailed comparison of model performance by programming language.

(a) Total Scores by Programming Language
Model Python C++ Java C C# JavaScript TypeScript Go Rust PHP

Gemini-2.5-Pro 2.788 2.074 2.326 2.064 2.419 2.268 2.203 2.338 2.002 2.641
Gemini-2.5-Flash 2.752 2.106 2.329 2.086 2.418 2.274 2.248 2.292 2.039 2.573
gpt5mini 2.799 2.039 2.329 2.050 2.414 2.280 2.189 2.264 2.088 2.476
claudesonnet4 2.677 2.065 2.331 2.054 2.424 2.314 2.154 2.311 1.997 2.553
GPT-5 2.669 2.001 2.281 2.022 2.335 2.244 2.098 2.249 2.044 2.516
claudesonnet3.7 2.663 2.100 2.314 2.062 2.364 2.245 2.162 2.298 2.000 2.641
GPT-4.1-mini 2.538 1.968 2.249 1.978 2.303 2.218 2.111 2.212 1.958 2.680
o3-mini 2.529 1.977 2.223 1.958 2.324 2.186 2.135 2.209 1.977 2.632
GPT-4.1-2025-04-14 2.517 1.962 2.193 1.957 2.280 2.182 2.075 2.197 1.942 2.661
o3 2.432 1.944 2.206 1.918 2.298 2.086 2.069 2.167 1.943 2.479
o4-mini 2.465 1.941 2.184 1.918 2.243 2.159 2.052 2.174 1.910 2.432
GPT-4o-mini 2.321 1.933 2.104 1.876 2.177 2.068 1.996 2.077 1.863 2.336
GPT-4o 2.313 1.921 2.110 1.864 2.187 2.063 1.995 2.078 1.864 2.335

(b) Success Rates by Programming Language (%)
Model Python C++ Java C C# JavaScript TypeScript Go Rust PHP

Gemini-2.5-Pro 99.75 99.88 99.88 99.88 99.75 100.00 100.00 99.75 100.00 99.88
Gemini-2.5-Flash 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.75
gpt5mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet4 99.50 99.63 99.75 99.50 99.50 99.50 99.75 99.63 99.50 99.50
GPT-5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet3.7 99.88 99.63 99.88 99.75 99.75 99.75 99.88 99.88 99.75 99.88
GPT-4.1-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4.1-2025-04-14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o4-mini 99.25 100.00 100.00 100.00 99.75 99.75 100.00 99.75 99.75 99.25
GPT-4o-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4o 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

(c) Software Engineering Scores by Programming Language
Model Python C++ Java C C# JavaScript TypeScript Go Rust PHP

Gemini-2.5-Pro 0.485 0.340 0.395 0.321 0.375 0.368 0.380 0.379 0.342 0.361
Gemini-2.5-Flash 0.483 0.343 0.395 0.324 0.375 0.369 0.383 0.371 0.345 0.356
gpt5mini 0.486 0.340 0.395 0.322 0.375 0.370 0.378 0.374 0.348 0.352
claudesonnet4 0.488 0.342 0.397 0.324 0.377 0.372 0.376 0.377 0.344 0.357
GPT-5 0.476 0.335 0.385 0.318 0.365 0.362 0.370 0.368 0.340 0.348
claudesonnet3.7 0.485 0.344 0.394 0.325 0.373 0.368 0.378 0.376 0.344 0.361
GPT-4.1-mini 0.467 0.329 0.381 0.314 0.359 0.358 0.366 0.363 0.332 0.371
o3-mini 0.465 0.330 0.377 0.312 0.361 0.355 0.368 0.362 0.335 0.365
GPT-4.1-2025-04-14 0.463 0.328 0.372 0.311 0.356 0.354 0.364 0.361 0.330 0.369
o3 0.448 0.325 0.374 0.307 0.358 0.340 0.363 0.356 0.330 0.344
o4-mini 0.454 0.324 0.370 0.307 0.350 0.351 0.360 0.357 0.325 0.337
GPT-4o-mini 0.428 0.323 0.356 0.300 0.340 0.336 0.350 0.341 0.317 0.324
GPT-4o 0.426 0.321 0.357 0.298 0.341 0.335 0.350 0.341 0.317 0.324

(d) Functional Scores by Programming Language
Model Python C++ Java C C# JavaScript TypeScript Go Rust PHP

Gemini-2.5-Pro 0.507 0.216 0.380 0.213 0.441 0.365 0.309 0.299 0.210 0.618
Gemini-2.5-Flash 0.505 0.219 0.380 0.216 0.441 0.366 0.312 0.291 0.213 0.613
gpt5mini 0.508 0.215 0.380 0.213 0.441 0.367 0.307 0.295 0.217 0.609
claudesonnet4 0.489 0.217 0.382 0.215 0.443 0.369 0.305 0.298 0.213 0.616
GPT-5 0.487 0.210 0.370 0.208 0.431 0.359 0.297 0.289 0.208 0.604
claudesonnet3.7 0.486 0.219 0.381 0.217 0.440 0.365 0.309 0.297 0.213 0.618
GPT-4.1-mini 0.468 0.204 0.366 0.204 0.426 0.354 0.293 0.285 0.202 0.627
o3-mini 0.466 0.205 0.362 0.202 0.428 0.351 0.295 0.283 0.205 0.621
GPT-4.1-2025-04-14 0.464 0.203 0.357 0.201 0.423 0.350 0.291 0.282 0.200 0.625
o3 0.448 0.201 0.360 0.197 0.425 0.334 0.289 0.276 0.200 0.599
o4-mini 0.454 0.200 0.356 0.197 0.418 0.347 0.287 0.279 0.195 0.587
GPT-4o-mini 0.428 0.199 0.342 0.193 0.408 0.332 0.273 0.263 0.187 0.567
GPT-4o 0.426 0.197 0.343 0.191 0.409 0.331 0.273 0.263 0.187 0.567
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Table 10: Detailed comparison of model performance by programming language (continued).

(e) Quality Scores by Programming Language
Model Python C++ Java C C# JavaScript TypeScript Go Rust PHP

Gemini-2.5-Pro 0.795 0.801 0.709 0.826 0.742 0.746 0.735 0.846 0.750 0.731
Gemini-2.5-Flash 0.793 0.804 0.709 0.829 0.742 0.747 0.738 0.838 0.753 0.726
gpt5mini 0.796 0.800 0.709 0.825 0.742 0.748 0.733 0.841 0.757 0.722
claudesonnet4 0.778 0.802 0.711 0.827 0.744 0.750 0.731 0.849 0.748 0.729
GPT-5 0.776 0.796 0.698 0.821 0.730 0.740 0.723 0.837 0.744 0.718
claudesonnet3.7 0.794 0.805 0.710 0.830 0.741 0.746 0.736 0.847 0.751 0.732
GPT-4.1-mini 0.777 0.787 0.694 0.816 0.726 0.736 0.719 0.829 0.736 0.750
o3-mini 0.775 0.788 0.690 0.814 0.728 0.733 0.721 0.827 0.739 0.744
GPT-4.1-2025-04-14 0.773 0.786 0.685 0.813 0.723 0.732 0.717 0.825 0.734 0.748
o3 0.758 0.784 0.688 0.809 0.725 0.716 0.719 0.823 0.737 0.726
o4-mini 0.761 0.783 0.684 0.809 0.720 0.729 0.716 0.821 0.730 0.719
GPT-4o-mini 0.739 0.782 0.670 0.804 0.710 0.712 0.702 0.805 0.714 0.702
GPT-4o 0.737 0.780 0.671 0.802 0.711 0.711 0.702 0.805 0.714 0.702

(f) Long-Context Scores by Programming Language
Model Python C++ Java C C# JavaScript TypeScript Go Rust PHP

Gemini-2.5-Pro 0.527 0.539 0.513 0.551 0.532 0.479 0.490 0.572 0.504 0.522
Gemini-2.5-Flash 0.530 0.542 0.516 0.554 0.535 0.482 0.493 0.565 0.507 0.517
gpt5mini 0.527 0.538 0.513 0.550 0.531 0.481 0.487 0.569 0.510 0.513
claudesonnet4 0.510 0.540 0.515 0.552 0.533 0.483 0.485 0.571 0.506 0.520
GPT-5 0.508 0.535 0.500 0.547 0.519 0.475 0.477 0.564 0.502 0.506
claudesonnet3.7 0.509 0.541 0.514 0.553 0.532 0.480 0.489 0.570 0.505 0.521
GPT-4.1-mini 0.492 0.524 0.497 0.536 0.516 0.464 0.472 0.553 0.489 0.505
o3-mini 0.490 0.525 0.493 0.534 0.518 0.461 0.474 0.551 0.492 0.503
GPT-4.1-2025-04-14 0.488 0.523 0.488 0.533 0.513 0.460 0.470 0.549 0.487 0.501
o3 0.473 0.508 0.476 0.518 0.497 0.444 0.454 0.533 0.471 0.485
o4-mini 0.475 0.510 0.472 0.520 0.494 0.447 0.452 0.535 0.468 0.479
GPT-4o-mini 0.459 0.494 0.456 0.504 0.478 0.431 0.436 0.519 0.452 0.463
GPT-4o 0.457 0.492 0.457 0.502 0.479 0.430 0.436 0.519 0.452 0.463
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Table 11: Detailed comparison of model performance by task category.

(a) Total Scores by Task Category
Model Arch. Understanding Cross-File Refact. Multi-Session Dev. Bug Investigation Feature Impl. Code Comprehension Integration Testing Security Analysis

Gemini-2.5-Pro 2.338 2.272 2.280 2.272 2.299 2.273 2.421 2.343
Gemini-2.5-Flash 2.280 2.303 2.291 2.276 2.335 2.211 2.430 2.325
gpt5mini 2.370 2.237 2.268 2.227 2.285 2.218 2.390 2.351
claudesonnet4 2.346 2.203 2.256 2.262 2.227 2.298 2.402 2.307
GPT-5 2.376 2.241 2.257 2.196 2.297 2.199 2.386 2.336
claudesonnet3.7 2.332 2.269 2.273 2.206 2.289 2.228 2.403 2.322
GPT-4.1-mini 2.238 2.181 2.152 2.192 2.220 2.206 2.363 2.226
o3-mini 2.231 2.156 2.182 2.165 2.205 2.237 2.330 2.214
GPT-4.1-2025-04-14 2.195 2.169 2.148 2.154 2.207 2.166 2.346 2.191
o3 2.123 2.151 2.181 2.058 2.192 2.010 2.323 2.197
o4-mini 2.148 2.146 2.134 2.094 2.166 2.088 2.277 2.131
GPT-4o-mini 2.059 2.054 2.089 2.043 2.057 2.054 2.184 2.061
GPT-4o 2.054 2.055 2.068 2.038 2.063 2.051 2.200 2.056

(b) Success Rates by Task Category (%)
Model Arch. Understanding Cross-File Refact. Multi-Session Dev. Bug Investigation Feature Impl. Code Comprehension Integration Testing Security Analysis

Gemini-2.5-Pro 99.70 99.90 100.00 99.80 99.80 100.00 99.90 99.90
Gemini-2.5-Flash 100.00 100.00 100.00 99.90 100.00 100.00 100.00 100.00
gpt5mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet4 99.60 99.40 99.50 99.50 99.70 99.70 99.60 99.60
GPT-5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet3.7 99.60 99.90 99.90 99.70 99.80 99.90 99.90 99.70
GPT-4.1-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4.1-2025-04-14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o4-mini 99.40 99.70 99.80 99.70 99.90 99.90 99.70 99.50
GPT-4o-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4o 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

(c) Software Engineering Scores by Task Category
Model Arch. Understanding Cross-File Refact. Multi-Session Dev. Bug Investigation Feature Impl. Code Comprehension Integration Testing Security Analysis

Gemini-2.5-Pro 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375
Gemini-2.5-Flash 0.373 0.373 0.373 0.373 0.373 0.373 0.373 0.373
gpt5mini 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376
claudesonnet4 0.379 0.379 0.379 0.379 0.379 0.379 0.379 0.379
GPT-5 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367
claudesonnet3.7 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377
GPT-4.1-mini 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359
o3-mini 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355
GPT-4.1-2025-04-14 0.352 0.352 0.352 0.352 0.352 0.352 0.352 0.352
o3 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342
o4-mini 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353
GPT-4o-mini 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341
GPT-4o 0.339 0.339 0.339 0.339 0.339 0.339 0.339 0.339

(d) Functional Scores by Task Category
Model Arch. Understanding Cross-File Refact. Multi-Session Dev. Bug Investigation Feature Impl. Code Comprehension Integration Testing Security Analysis

Gemini-2.5-Pro 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356
Gemini-2.5-Flash 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358
gpt5mini 0.371 0.371 0.371 0.371 0.371 0.371 0.371 0.371
claudesonnet4 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348
GPT-5 0.383 0.383 0.383 0.383 0.383 0.383 0.383 0.383
claudesonnet3.7 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347
GPT-4.1-mini 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365
o3-mini 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368
GPT-4.1-2025-04-14 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364
o3 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385
o4-mini 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360
GPT-4o-mini 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360
GPT-4o 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362

(e) Quality Scores by Task Category
Model Arch. Understanding Cross-File Refact. Multi-Session Dev. Bug Investigation Feature Impl. Code Comprehension Integration Testing Security Analysis

Gemini-2.5-Pro 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.768
Gemini-2.5-Flash 0.741 0.741 0.741 0.741 0.741 0.741 0.741 0.741
gpt5mini 0.745 0.745 0.745 0.745 0.745 0.745 0.745 0.745
claudesonnet4 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762
GPT-5 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732
claudesonnet3.7 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773
GPT-4.1-mini 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739
o3-mini 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726
GPT-4.1-2025-04-14 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720
o3 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721
o4-mini 0.704 0.704 0.704 0.704 0.704 0.704 0.704 0.704
GPT-4o-mini 0.679 0.679 0.679 0.679 0.679 0.679 0.679 0.679
GPT-4o 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677

(f) Long-Context Scores by Task Category
Model Arch. Understanding Cross-File Refact. Multi-Session Dev. Bug Investigation Feature Impl. Code Comprehension Integration Testing Security Analysis

Gemini-2.5-Pro 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523
Gemini-2.5-Flash 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565
gpt5mini 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479
claudesonnet4 0.492 0.492 0.492 0.492 0.492 0.492 0.492 0.492
GPT-5 0.492 0.492 0.492 0.492 0.492 0.492 0.492 0.492
claudesonnet3.7 0.477 0.477 0.477 0.477 0.477 0.477 0.477 0.477
GPT-4.1-mini 0.435 0.435 0.435 0.435 0.435 0.435 0.435 0.435
o3-mini 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455
GPT-4.1-2025-04-14 0.451 0.451 0.451 0.451 0.451 0.451 0.451 0.451
o3 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342
o4-mini 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393
GPT-4o-mini 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344
GPT-4o 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348

47



Table 12: Detailed comparison of model performance by application domain.

(a) Total Scores by Application Domain
Model Web Apps API Services Data Systems ML/AI Systems Gaming Sim. Blockchain Desktop Apps Embedded Sys. Mobile Apps Network Tools

Gemini-2.5-Pro 2.319 2.313 2.302 2.307 2.271 2.347 2.324 2.302 2.304 2.329
Gemini-2.5-Flash 2.302 2.312 2.304 2.310 2.252 2.323 2.309 2.301 2.310 2.321
gpt5mini 2.282 2.271 2.291 2.296 2.278 2.345 2.292 2.295 2.297 2.286
claudesonnet4 2.283 2.273 2.287 2.314 2.244 2.262 2.296 2.301 2.303 2.317
GPT-5 2.258 2.235 2.262 2.269 2.198 2.287 2.315 2.286 2.296 2.322
claudesonnet3.7 2.289 2.291 2.278 2.285 2.261 2.295 2.283 2.273 2.290 2.306
GPT-4.1-mini 2.215 2.211 2.231 2.228 2.192 2.232 2.229 2.217 2.228 2.232
o3-mini 2.203 2.203 2.223 2.218 2.184 2.223 2.226 2.211 2.219 2.220
GPT-4.1-2025-04-14 2.194 2.185 2.207 2.201 2.164 2.212 2.207 2.194 2.206 2.201
o3 2.138 2.117 2.167 2.169 2.110 2.172 2.169 2.152 2.166 2.171
o4-mini 2.137 2.132 2.157 2.153 2.116 2.167 2.157 2.143 2.157 2.159
GPT-4o-mini 2.065 2.061 2.084 2.080 2.049 2.086 2.082 2.071 2.081 2.084
GPT-4o 2.064 2.057 2.082 2.081 2.051 2.084 2.081 2.070 2.081 2.082

(b) Success Rates by Application Domain (%)
Model Web Apps API Services Data Systems ML/AI Systems Gaming Sim. Blockchain Desktop Apps Embedded Sys. Mobile Apps Network Tools

Gemini-2.5-Pro 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88
Gemini-2.5-Flash 100.00 100.00 99.88 100.00 99.88 100.00 100.00 100.00 100.00 100.00
gpt5mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet4 99.50 99.50 99.62 99.62 99.50 99.50 99.62 99.50 99.62 99.62
GPT-5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet3.7 99.75 99.88 99.75 99.75 99.75 99.88 99.88 99.75 99.88 99.75
GPT-4.1-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4.1-2025-04-14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o4-mini 99.62 99.75 99.75 99.75 99.62 99.75 99.75 99.62 99.75 99.75
GPT-4o-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4o 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

(c) Software Engineering Scores by Application Domain
Model Web Apps API Services Data Systems ML/AI Systems Gaming Sim. Blockchain Desktop Apps Embedded Sys. Mobile Apps Network Tools

Gemini-2.5-Pro 0.374 0.375 0.375 0.375 0.374 0.376 0.375 0.375 0.375 0.376
Gemini-2.5-Flash 0.372 0.374 0.373 0.374 0.372 0.373 0.374 0.373 0.374 0.374
gpt5mini 0.375 0.375 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.375
claudesonnet4 0.378 0.378 0.379 0.380 0.377 0.377 0.379 0.379 0.379 0.380
GPT-5 0.366 0.365 0.367 0.367 0.365 0.368 0.368 0.367 0.368 0.369
claudesonnet3.7 0.377 0.377 0.377 0.377 0.376 0.378 0.377 0.377 0.377 0.378
GPT-4.1-mini 0.358 0.358 0.360 0.359 0.357 0.359 0.359 0.358 0.359 0.359
o3-mini 0.354 0.354 0.356 0.355 0.353 0.355 0.356 0.355 0.355 0.355
GPT-4.1-2025-04-14 0.351 0.350 0.353 0.352 0.350 0.353 0.353 0.351 0.353 0.352
o3 0.341 0.339 0.344 0.344 0.338 0.344 0.344 0.342 0.344 0.344
o4-mini 0.352 0.351 0.354 0.353 0.350 0.354 0.354 0.352 0.354 0.354
GPT-4o-mini 0.340 0.339 0.342 0.341 0.338 0.342 0.342 0.340 0.342 0.342
GPT-4o 0.338 0.337 0.340 0.340 0.337 0.340 0.340 0.339 0.340 0.340

(d) Functional Scores by Application Domain
Model Web Apps API Services Data Systems ML/AI Systems Gaming Sim. Blockchain Desktop Apps Embedded Sys. Mobile Apps Network Tools

Gemini-2.5-Pro 0.356 0.356 0.356 0.356 0.355 0.357 0.356 0.356 0.356 0.357
Gemini-2.5-Flash 0.358 0.358 0.358 0.358 0.357 0.358 0.358 0.358 0.358 0.358
gpt5mini 0.370 0.370 0.371 0.371 0.371 0.372 0.371 0.371 0.371 0.370
claudesonnet4 0.347 0.347 0.348 0.349 0.346 0.346 0.348 0.348 0.348 0.349
GPT-5 0.382 0.381 0.383 0.383 0.381 0.384 0.384 0.383 0.384 0.385
claudesonnet3.7 0.347 0.347 0.347 0.347 0.346 0.348 0.347 0.347 0.347 0.348
GPT-4.1-mini 0.364 0.364 0.366 0.365 0.363 0.365 0.365 0.364 0.365 0.365
o3-mini 0.367 0.367 0.369 0.368 0.366 0.368 0.369 0.368 0.368 0.368
GPT-4.1-2025-04-14 0.363 0.362 0.365 0.364 0.362 0.365 0.365 0.363 0.365 0.364
o3 0.384 0.382 0.387 0.387 0.381 0.387 0.387 0.385 0.387 0.387
o4-mini 0.359 0.358 0.361 0.360 0.357 0.361 0.361 0.359 0.361 0.361
GPT-4o-mini 0.359 0.358 0.361 0.360 0.357 0.361 0.361 0.359 0.361 0.361
GPT-4o 0.361 0.360 0.363 0.362 0.360 0.363 0.363 0.361 0.363 0.363

48



Table 13: Detailed comparison of model performance by application domain (continued).

(e) Quality Scores by Application Domain
Model Web Apps API Services Data Systems ML/AI Systems Gaming Sim. Blockchain Desktop Apps Embedded Sys. Mobile Apps Network Tools

Gemini-2.5-Pro 0.768 0.768 0.768 0.768 0.767 0.769 0.768 0.768 0.768 0.769
Gemini-2.5-Flash 0.741 0.741 0.741 0.741 0.740 0.741 0.741 0.741 0.741 0.741
gpt5mini 0.745 0.744 0.745 0.745 0.745 0.746 0.745 0.745 0.745 0.744
claudesonnet4 0.762 0.762 0.762 0.763 0.761 0.761 0.762 0.762 0.762 0.763
GPT-5 0.732 0.731 0.732 0.732 0.730 0.733 0.733 0.732 0.733 0.734
claudesonnet3.7 0.773 0.773 0.772 0.773 0.772 0.774 0.773 0.772 0.773 0.774
GPT-4.1-mini 0.739 0.738 0.740 0.739 0.738 0.740 0.740 0.739 0.740 0.740
o3-mini 0.726 0.725 0.727 0.726 0.724 0.727 0.727 0.726 0.727 0.727
GPT-4.1-2025-04-14 0.720 0.719 0.721 0.720 0.718 0.721 0.721 0.720 0.721 0.721
o3 0.721 0.720 0.723 0.723 0.719 0.723 0.723 0.722 0.723 0.723
o4-mini 0.704 0.703 0.706 0.705 0.702 0.706 0.706 0.704 0.706 0.706
GPT-4o-mini 0.679 0.678 0.681 0.680 0.677 0.681 0.681 0.679 0.681 0.681
GPT-4o 0.677 0.676 0.679 0.678 0.676 0.679 0.679 0.677 0.679 0.679

(f) Long-Context Scores by Application Domain
Model Web Apps API Services Data Systems ML/AI Systems Gaming Sim. Blockchain Desktop Apps Embedded Sys. Mobile Apps Network Tools

Gemini-2.5-Pro 0.523 0.523 0.523 0.523 0.522 0.524 0.523 0.523 0.523 0.524
Gemini-2.5-Flash 0.565 0.565 0.565 0.565 0.564 0.565 0.565 0.565 0.565 0.565
gpt5mini 0.479 0.478 0.479 0.479 0.479 0.480 0.479 0.479 0.479 0.478
claudesonnet4 0.492 0.492 0.492 0.493 0.491 0.491 0.492 0.492 0.492 0.493
GPT-5 0.492 0.491 0.492 0.492 0.490 0.493 0.493 0.492 0.493 0.494
claudesonnet3.7 0.477 0.477 0.476 0.477 0.476 0.478 0.477 0.476 0.477 0.478
GPT-4.1-mini 0.435 0.434 0.436 0.435 0.434 0.436 0.436 0.435 0.436 0.436
o3-mini 0.455 0.454 0.456 0.455 0.453 0.456 0.456 0.455 0.456 0.456
GPT-4.1-2025-04-14 0.451 0.450 0.452 0.451 0.449 0.452 0.452 0.451 0.452 0.452
o3 0.342 0.341 0.344 0.344 0.340 0.344 0.344 0.343 0.344 0.344
o4-mini 0.393 0.392 0.395 0.394 0.391 0.395 0.395 0.393 0.395 0.395
GPT-4o-mini 0.344 0.343 0.346 0.345 0.342 0.346 0.346 0.344 0.346 0.346
GPT-4o 0.348 0.347 0.350 0.349 0.347 0.350 0.350 0.348 0.350 0.350
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Table 14: Detailed comparison of model performance by architecture pattern.

(a) Total Scores by Architecture Pattern
Model Monolithic Microservices MVC Hexagonal Event-Driven Serverless Layered Component Repository Factory

Gemini-2.5-Pro 2.309 2.305 2.330 2.350 2.314 2.329 2.316 2.295 2.307 2.315
Gemini-2.5-Flash 2.303 2.306 2.325 2.383 2.317 2.325 2.298 2.286 2.303 2.307
gpt5mini 2.295 2.271 2.321 2.458 2.300 2.308 2.282 2.275 2.289 2.291
claudesonnet4 2.288 2.267 2.321 2.368 2.300 2.309 2.285 2.271 2.284 2.288
GPT-5 2.262 2.225 2.284 2.347 2.271 2.280 2.297 2.283 2.291 2.295
claudesonnet3.7 2.281 2.267 2.314 2.357 2.295 2.302 2.281 2.268 2.281 2.285
GPT-4.1-mini 2.219 2.208 2.242 2.284 2.228 2.235 2.221 2.209 2.218 2.221
o3-mini 2.213 2.196 2.236 2.275 2.221 2.228 2.210 2.198 2.212 2.215
GPT-4.1-2025-04-14 2.194 2.180 2.216 2.250 2.202 2.210 2.194 2.182 2.194 2.197
o3 2.147 2.123 2.174 2.207 2.158 2.166 2.150 2.139 2.151 2.154
o4-mini 2.146 2.132 2.168 2.199 2.153 2.161 2.146 2.135 2.147 2.150
GPT-4o-mini 2.072 2.058 2.093 2.118 2.079 2.087 2.072 2.062 2.074 2.076
GPT-4o 2.070 2.056 2.091 2.115 2.077 2.085 2.070 2.061 2.072 2.074

(b) Success Rates by Architecture Pattern (%)
Model Monolithic Microservices MVC Hexagonal Event-Driven Serverless Layered Component Repository Factory

Gemini-2.5-Pro 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88
Gemini-2.5-Flash 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.88
gpt5mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet4 99.50 99.50 99.62 99.62 99.62 99.62 99.50 99.50 99.50 99.50
GPT-5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet3.7 99.75 99.88 99.88 99.75 99.75 99.88 99.75 99.75 99.75 99.88
GPT-4.1-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4.1-2025-04-14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o4-mini 99.75 99.75 99.75 99.75 99.75 99.75 99.75 99.75 99.75 99.75
GPT-4o-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4o 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

(c) Software Engineering Scores by Architecture Pattern
Model Monolithic Microservices MVC Hexagonal Event-Driven Serverless Layered Component Repository Factory

Gemini-2.5-Pro 0.375 0.375 0.375 0.376 0.375 0.375 0.375 0.374 0.375 0.375
Gemini-2.5-Flash 0.373 0.373 0.373 0.375 0.373 0.373 0.373 0.372 0.373 0.373
gpt5mini 0.376 0.375 0.376 0.378 0.376 0.376 0.375 0.375 0.376 0.376
claudesonnet4 0.379 0.378 0.379 0.381 0.379 0.379 0.378 0.378 0.378 0.379
GPT-5 0.367 0.366 0.367 0.369 0.367 0.367 0.368 0.367 0.368 0.368
claudesonnet3.7 0.377 0.377 0.378 0.379 0.378 0.378 0.377 0.377 0.377 0.377
GPT-4.1-mini 0.359 0.358 0.360 0.361 0.359 0.359 0.359 0.358 0.359 0.359
o3-mini 0.355 0.354 0.356 0.357 0.355 0.355 0.355 0.354 0.355 0.355
GPT-4.1-2025-04-14 0.352 0.351 0.353 0.354 0.352 0.352 0.352 0.351 0.352 0.352
o3 0.342 0.340 0.344 0.345 0.343 0.343 0.342 0.341 0.342 0.342
o4-mini 0.353 0.352 0.354 0.355 0.353 0.353 0.353 0.352 0.353 0.353
GPT-4o-mini 0.341 0.340 0.342 0.343 0.341 0.341 0.341 0.340 0.341 0.341
GPT-4o 0.339 0.338 0.340 0.341 0.339 0.339 0.339 0.338 0.339 0.339

(d) Functional Scores by Architecture Pattern
Model Monolithic Microservices MVC Hexagonal Event-Driven Serverless Layered Component Repository Factory

Gemini-2.5-Pro 0.356 0.356 0.357 0.357 0.356 0.357 0.356 0.355 0.356 0.356
Gemini-2.5-Flash 0.358 0.358 0.358 0.360 0.358 0.358 0.357 0.357 0.358 0.358
gpt5mini 0.371 0.370 0.371 0.374 0.371 0.371 0.370 0.370 0.371 0.371
claudesonnet4 0.348 0.347 0.348 0.350 0.348 0.348 0.347 0.347 0.347 0.348
GPT-5 0.383 0.382 0.383 0.385 0.383 0.383 0.384 0.383 0.384 0.384
claudesonnet3.7 0.347 0.347 0.348 0.349 0.348 0.348 0.347 0.347 0.347 0.347
GPT-4.1-mini 0.365 0.364 0.366 0.367 0.365 0.365 0.365 0.364 0.365 0.365
o3-mini 0.368 0.367 0.369 0.370 0.368 0.368 0.368 0.367 0.368 0.368
GPT-4.1-2025-04-14 0.364 0.363 0.365 0.366 0.364 0.364 0.364 0.363 0.364 0.364
o3 0.385 0.383 0.387 0.388 0.386 0.386 0.385 0.384 0.385 0.385
o4-mini 0.360 0.359 0.361 0.362 0.360 0.360 0.360 0.359 0.360 0.360
GPT-4o-mini 0.360 0.359 0.361 0.362 0.360 0.360 0.360 0.359 0.360 0.360
GPT-4o 0.362 0.361 0.363 0.364 0.362 0.362 0.362 0.361 0.362 0.362
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Table 15: Detailed comparison of model performance by architecture pattern (continued).

(e) Quality Scores by Architecture Pattern
Model Monolithic Microservices MVC Hexagonal Event-Driven Serverless Layered Component Repository Factory

Gemini-2.5-Pro 0.768 0.768 0.769 0.769 0.768 0.769 0.768 0.767 0.768 0.768
Gemini-2.5-Flash 0.741 0.741 0.741 0.743 0.741 0.741 0.740 0.740 0.741 0.741
gpt5mini 0.745 0.744 0.745 0.748 0.745 0.745 0.744 0.744 0.745 0.745
claudesonnet4 0.762 0.761 0.762 0.764 0.762 0.762 0.761 0.761 0.761 0.762
GPT-5 0.732 0.731 0.732 0.734 0.732 0.732 0.733 0.732 0.733 0.733
claudesonnet3.7 0.773 0.773 0.774 0.775 0.774 0.774 0.773 0.772 0.773 0.773
GPT-4.1-mini 0.739 0.738 0.740 0.741 0.739 0.739 0.739 0.738 0.739 0.739
o3-mini 0.726 0.725 0.727 0.728 0.726 0.726 0.726 0.725 0.726 0.726
GPT-4.1-2025-04-14 0.720 0.719 0.721 0.722 0.720 0.720 0.720 0.719 0.720 0.720
o3 0.721 0.720 0.723 0.724 0.722 0.722 0.721 0.720 0.721 0.721
o4-mini 0.704 0.703 0.706 0.707 0.705 0.705 0.704 0.703 0.704 0.704
GPT-4o-mini 0.679 0.678 0.681 0.682 0.680 0.680 0.679 0.678 0.679 0.679
GPT-4o 0.677 0.676 0.679 0.680 0.678 0.678 0.677 0.676 0.677 0.677

(f) Long-Context Scores by Architecture Pattern
Model Monolithic Microservices MVC Hexagonal Event-Driven Serverless Layered Component Repository Factory

Gemini-2.5-Pro 0.523 0.523 0.524 0.524 0.523 0.524 0.523 0.522 0.523 0.523
Gemini-2.5-Flash 0.565 0.565 0.565 0.567 0.565 0.565 0.564 0.564 0.565 0.565
gpt5mini 0.479 0.478 0.479 0.482 0.479 0.479 0.478 0.478 0.479 0.479
claudesonnet4 0.492 0.491 0.492 0.494 0.492 0.492 0.491 0.491 0.491 0.492
GPT-5 0.492 0.491 0.492 0.494 0.492 0.492 0.493 0.492 0.493 0.493
claudesonnet3.7 0.477 0.477 0.478 0.479 0.478 0.478 0.477 0.476 0.477 0.477
GPT-4.1-mini 0.435 0.434 0.436 0.437 0.435 0.435 0.435 0.434 0.435 0.435
o3-mini 0.455 0.454 0.456 0.457 0.455 0.455 0.455 0.454 0.455 0.455
GPT-4.1-2025-04-14 0.451 0.450 0.452 0.453 0.451 0.451 0.451 0.450 0.451 0.451
o3 0.342 0.341 0.344 0.345 0.343 0.343 0.342 0.341 0.342 0.342
o4-mini 0.393 0.392 0.395 0.396 0.394 0.394 0.393 0.392 0.393 0.393
GPT-4o-mini 0.344 0.343 0.346 0.347 0.345 0.345 0.344 0.343 0.344 0.344
GPT-4o 0.348 0.347 0.350 0.351 0.349 0.349 0.348 0.347 0.348 0.348
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Table 16: Detailed comparison of model performance by theme.

(a) Total Scores by Theme
Model Algorithms Data Structures System Design Security Performance Testing Maintenance Integration

Gemini-2.5-Pro 2.325 2.318 2.301 2.343 2.295 2.421 2.306 2.315
Gemini-2.5-Flash 2.309 2.312 2.299 2.325 2.297 2.430 2.301 2.312
gpt5mini 2.295 2.298 2.284 2.351 2.282 2.390 2.289 2.297
claudesonnet4 2.289 2.294 2.276 2.307 2.275 2.402 2.284 2.291
GPT-5 2.269 2.273 2.257 2.336 2.260 2.386 2.265 2.274
claudesonnet3.7 2.285 2.289 2.272 2.322 2.275 2.403 2.280 2.287
GPT-4.1-mini 2.223 2.228 2.212 2.226 2.215 2.363 2.219 2.226
o3-mini 2.217 2.222 2.206 2.214 2.209 2.330 2.213 2.220
GPT-4.1-2025-04-14 2.197 2.202 2.186 2.191 2.189 2.346 2.193 2.200
o3 2.155 2.160 2.144 2.197 2.147 2.323 2.151 2.158
o4-mini 2.150 2.155 2.139 2.131 2.142 2.277 2.146 2.153
GPT-4o-mini 2.077 2.082 2.066 2.061 2.069 2.184 2.073 2.080
GPT-4o 2.075 2.080 2.064 2.056 2.067 2.200 2.071 2.078

(b) Success Rates by Theme (%)
Model Algorithms Data Structures System Design Security Performance Testing Maintenance Integration

Gemini-2.5-Pro 99.88 99.88 99.88 99.90 99.88 99.90 99.88 99.88
Gemini-2.5-Flash 100.00 100.00 99.88 100.00 100.00 100.00 100.00 100.00
gpt5mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet4 99.50 99.62 99.50 99.60 99.50 99.60 99.62 99.50
GPT-5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
claudesonnet3.7 99.75 99.88 99.75 99.70 99.88 99.90 99.75 99.88
GPT-4.1-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4.1-2025-04-14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
o4-mini 99.75 99.75 99.62 99.50 99.75 99.70 99.75 99.75
GPT-4o-mini 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
GPT-4o 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

(c) Software Engineering Scores by Theme
Model Algorithms Data Structures System Design Security Performance Testing Maintenance Integration

Gemini-2.5-Pro 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375
Gemini-2.5-Flash 0.373 0.373 0.373 0.373 0.373 0.373 0.373 0.373
gpt5mini 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376
claudesonnet4 0.379 0.379 0.379 0.379 0.379 0.379 0.379 0.379
GPT-5 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367
claudesonnet3.7 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377
GPT-4.1-mini 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359
o3-mini 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355
GPT-4.1-2025-04-14 0.352 0.352 0.352 0.352 0.352 0.352 0.352 0.352
o3 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342
o4-mini 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353
GPT-4o-mini 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341
GPT-4o 0.339 0.339 0.339 0.339 0.339 0.339 0.339 0.339

(d) Functional Scores by Theme
Model Algorithms Data Structures System Design Security Performance Testing Maintenance Integration

Gemini-2.5-Pro 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356
Gemini-2.5-Flash 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358
gpt5mini 0.371 0.371 0.371 0.371 0.371 0.371 0.371 0.371
claudesonnet4 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348
GPT-5 0.383 0.383 0.383 0.383 0.383 0.383 0.383 0.383
claudesonnet3.7 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347
GPT-4.1-mini 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365
o3-mini 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368
GPT-4.1-2025-04-14 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364
o3 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385
o4-mini 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360
GPT-4o-mini 0.360 0.360 0.360 0.360 0.360 0.360 0.360 0.360
GPT-4o 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362
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Table 17: Detailed comparison of model performance by theme (continued).

(e) Quality Scores by Theme
Model Algorithms Data Structures System Design Security Performance Testing Maintenance Integration

Gemini-2.5-Pro 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.768
Gemini-2.5-Flash 0.741 0.741 0.741 0.741 0.741 0.741 0.741 0.741
gpt5mini 0.745 0.745 0.745 0.745 0.745 0.745 0.745 0.745
claudesonnet4 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762
GPT-5 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732
claudesonnet3.7 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773
GPT-4.1-mini 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739
o3-mini 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726
GPT-4.1-2025-04-14 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720
o3 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721
o4-mini 0.704 0.704 0.704 0.704 0.704 0.704 0.704 0.704
GPT-4o-mini 0.679 0.679 0.679 0.679 0.679 0.679 0.679 0.679
GPT-4o 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677

(f) Long-Context Scores by Theme
Model Algorithms Data Structures System Design Security Performance Testing Maintenance Integration

Gemini-2.5-Pro 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523
Gemini-2.5-Flash 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565
gpt5mini 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479
claudesonnet4 0.492 0.492 0.492 0.492 0.492 0.492 0.492 0.492
GPT-5 0.492 0.492 0.492 0.492 0.492 0.492 0.492 0.492
claudesonnet3.7 0.477 0.477 0.477 0.477 0.477 0.477 0.477 0.477
GPT-4.1-mini 0.435 0.435 0.435 0.435 0.435 0.435 0.435 0.435
o3-mini 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455
GPT-4.1-2025-04-14 0.451 0.451 0.451 0.451 0.451 0.451 0.451 0.451
o3 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342
o4-mini 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393
GPT-4o-mini 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344
GPT-4o 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348
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